自愈水凝胶
生物污染
可穿戴计算机
纳米棒
纳米技术
纳米材料
材料科学
化学
复合数
计算机科学
生物化学
复合材料
高分子化学
嵌入式系统
膜
作者
Zhen Song,Rong Li,Zhuowang Li,Xiliang Luo
标识
DOI:10.1016/j.bios.2024.116640
摘要
Wearable electrochemical sweat sensors are potentially promising for health monitoring in a continuous and non-invasive mode with high sensitivity. However, due to the complexity of sweat composition and the growth of skin bacteria, the wearable sweat sensors may gradually lose their sensitivity or even fail over time. To deal with this issue, herein, we proposed a new strategy to construct wearable sweat sensors with antifouling and antimicrobial capabilities. Amyloid albumin hydrogels (ABSAG) were doped with two-dimensional (2D) nanomaterial MXene and CeO2 nanorods to obtain the antifouling and antimicrobial amyloid albumin composite hydrogels (ABSACG, CeO2/MXene/ABSAG), and the wearable sensors were prepared by modifying flexible screen-printed electrodes with the ABSACG. Within this sensing system, the hydrophilic ABSAG possesses strong hydration capability, and it can form a hydration layer on the electrode surface to resist biofouling in sweat. The 2D nanomaterial MXene dispersed in the hydrogel endows the hydrogel with good conductivity and electrocatalytic capability, while the doping of CeO2 nanorods further improves the electrocatalytic performance of the hydrogel and also provides excellent antimicrobial capability. The designed wearable electrochemical sensors based on the ABSACG demonstrated satisfying antifouling and antimicrobial abilities, and they were capable of detecting dopamine accurately in human sweat. It is expected that wearable sensors utilizing the antifouling and antimicrobial ABSACG may find practical applications in human body fluids analysis and health monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI