Heterogeneous Structure and Dynamics of Water in a Hydrated Collagen Microfibril

微纤维 纤维 分子 高分子 分子动力学 化学 氢键 生物物理学 化学物理 胶原纤维 化学工程 结晶学 材料科学 纤维素 生物化学 计算化学 有机化学 工程类 生物
作者
Maxime Vassaux
出处
期刊:Biomacromolecules [American Chemical Society]
标识
DOI:10.1021/acs.biomac.4c00183
摘要

Collagen type I is well-known for its outstanding mechanical properties which it inherits from its hierarchical structure. Collagen type I fibrils may be viewed as a heterogeneous material made of protein, macromolecules (such as glycosaminoglycans and proteoglycans) and water. Water content modulates the properties of these fibrils. Yet, the properties of water and the fine interactions of water with the protein constituent of these heterofibrils have only received limited attention. Here, we propose to model collagen type I fibrils as a hydrated structure made of tropocollagen molecules assembled in a microfibril crystal. We perform large-scale all-atom molecular dynamics simulations of the hydration of collagen fibrils beyond the onset of disassembly. We found that the structural and dynamic properties of water vary strongly with the level of hydration of the microfibril. More importantly, we found that the properties vary spatially within the 67 nm D-spacing periodic structure. Alteration of the structural and dynamical properties of the collagen microfibril occur first in the gap region. Overall, we identify that the change in the role of water molecules from glue to lubricant between tropocollagen molecules arises around 100% hydration while the microfibril begins to disassemble beyond 130% water content. Our findings are supported by a decrease in hydrogen bonding, recovery of bulk water properties and amorphization of the tropocollagen molecules packing. Our simulations reveal the structure and dynamics of hydrated collagen fibrils with unprecedented spatial resolution from physiological conditions to disassembly. Beyond the process of self-assembly and the emergence of mechanical properties of collagen type I fibrils, our results may also provide new insights into mineralization of collagen fibrils.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由溪灵发布了新的文献求助10
刚刚
碧蓝丹烟发布了新的文献求助10
2秒前
2秒前
3秒前
负责的寒梅完成签到,获得积分10
4秒前
天天快乐应助江流儿采纳,获得10
5秒前
善良半梦完成签到,获得积分10
5秒前
阜睿发布了新的文献求助10
5秒前
斯文败类应助机智小白锋采纳,获得10
5秒前
gangfenglh给gangfenglh的求助进行了留言
6秒前
风中听枫发布了新的文献求助10
6秒前
7秒前
海森堡发布了新的文献求助10
8秒前
还单身的绮梅完成签到,获得积分10
9秒前
王灿灿发布了新的文献求助10
10秒前
Akim应助哒哒李采纳,获得10
10秒前
eeeee发布了新的文献求助10
10秒前
11秒前
dt发布了新的文献求助10
11秒前
ssm发布了新的文献求助20
12秒前
12秒前
12秒前
幸福沉鱼发布了新的文献求助10
13秒前
14秒前
京客家完成签到,获得积分10
15秒前
鱼鱼子999发布了新的文献求助10
15秒前
16秒前
京客家发布了新的文献求助20
17秒前
杳鸢应助kk采纳,获得20
17秒前
内向友桃发布了新的文献求助10
18秒前
19秒前
21秒前
learnerZ_2023完成签到,获得积分10
22秒前
CipherSage应助李金玉采纳,获得10
22秒前
22秒前
自由溪灵发布了新的文献求助10
22秒前
闪闪钢铁侠完成签到,获得积分10
23秒前
耀学菜菜发布了新的文献求助10
23秒前
美满的新烟完成签到,获得积分20
24秒前
哒哒李发布了新的文献求助10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489857
求助须知:如何正确求助?哪些是违规求助? 3076978
关于积分的说明 9147123
捐赠科研通 2769152
什么是DOI,文献DOI怎么找? 1519630
邀请新用户注册赠送积分活动 704069
科研通“疑难数据库(出版商)”最低求助积分说明 702084