亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient neural implicit representation for 3D human reconstruction

人工智能 计算机科学 代表(政治) 计算机视觉 模式识别(心理学) 政治 政治学 法学
作者
NULL AUTHOR_ID,Sarah M. Erfani,Siying Lu,NULL AUTHOR_ID
出处
期刊:Pattern Recognition [Elsevier]
卷期号:156: 110758-110758 被引量:2
标识
DOI:10.1016/j.patcog.2024.110758
摘要

High-fidelity digital human representations are increasingly in demand in the digital world, particularly for interactive telepresence, AR/VR, 3D graphics, and the rapidly evolving metaverse. Even though they work well in small spaces, conventional methods for reconstructing 3D human motion frequently require the use of expensive hardware and have high processing costs. This study presents HumanAvatar, an innovative approach that efficiently reconstructs precise human avatars from monocular video sources. At the core of our methodology, we integrate the pre-trained HuMoR, a model celebrated for its proficiency in human motion estimation. This is adeptly fused with the cutting-edge neural radiance field technology, Instant-NGP, and the state-of-the-art articulated model, Fast-SNARF, to enhance the reconstruction fidelity and speed. By combining these two technologies, a system is created that can render quickly and effectively while also providing estimation of human pose parameters that are unmatched in accuracy. We have enhanced our system with an advanced posture-sensitive space reduction technique, which optimally balances rendering quality with computational efficiency. In our detailed experimental analysis using both artificial and real-world monocular videos, we establish the advanced performance of our approach. HumanAvatar consistently equals or surpasses contemporary leading-edge reconstruction techniques in quality. Furthermore, it achieves these complex reconstructions in minutes, a fraction of the time typically required by existing methods. Our models achieve a training speed that is 110× faster than that of State-of-The-Art (SoTA) NeRF-based models. Our technique performs noticeably better than SoTA dynamic human NeRF methods if given an identical runtime limit. HumanAvatar can provide effective visuals after only 30 s of training. Please visit https://github.com/HZXu-526/Human-Avatar for further demo results and code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiaojin完成签到,获得积分10
2秒前
打打应助wyg1994采纳,获得10
3秒前
烟花应助基围虾采纳,获得10
3秒前
下午好完成签到 ,获得积分10
4秒前
gc完成签到 ,获得积分10
6秒前
19秒前
26秒前
八月发布了新的文献求助30
26秒前
今后应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
1分钟前
基围虾发布了新的文献求助10
1分钟前
吴嘉俊完成签到 ,获得积分10
1分钟前
largpark完成签到 ,获得积分10
1分钟前
樊冀鑫发布了新的文献求助20
1分钟前
上官若男应助zyc采纳,获得10
1分钟前
uikymh完成签到 ,获得积分0
1分钟前
派大星完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zyc发布了新的文献求助10
1分钟前
hhhhhhh完成签到,获得积分10
2分钟前
2分钟前
燕海雪发布了新的文献求助10
2分钟前
zyc完成签到,获得积分10
2分钟前
潮人完成签到 ,获得积分10
2分钟前
燕海雪完成签到,获得积分10
2分钟前
2分钟前
Ni发布了新的文献求助10
2分钟前
2分钟前
3分钟前
学霸宇大王完成签到 ,获得积分10
3分钟前
伊坂完成签到 ,获得积分10
3分钟前
3分钟前
syiimo完成签到 ,获得积分10
3分钟前
柯擎汉发布了新的文献求助10
4分钟前
小二郎应助柯擎汉采纳,获得10
4分钟前
852应助科研通管家采纳,获得10
4分钟前
研友_ZAVbe8应助科研通管家采纳,获得30
4分钟前
尘尘完成签到,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784062
捐赠科研通 2444016
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989