Metal-Organic Frameworks: Advances in First-Principles Computational Studies on Catalysis, Adsorption, and Energy Storage

材料科学 吸附 金属有机骨架 生化工程 计算模型 纳米技术 计算机科学 系统工程 有机化学 人工智能 工程类 化学
作者
Junqi Peng,Yingna Zhao,Xiaoyu Wang,Xiongfeng Zeng,Jiansheng Wang,Suoxia Hou
出处
期刊:Materials today communications [Elsevier]
卷期号:40: 109780-109780 被引量:13
标识
DOI:10.1016/j.mtcomm.2024.109780
摘要

Metal-organic frameworks (MOFs) have exhibited tremendous potential in catalysis, gas storage, drug delivery, and sensing due to their high surface area, high porosity, and tunability. MOFs are constructed from metal ions or clusters connected by organic ligands, offering scientists extensive research possibilities owing to their diversity and complexity. However, the diversity of MOFs also presents challenges in stability and controllability, particularly concerning instability or structural changes under varying environmental conditions. Theoretical calculations, especially first-principles calculations and molecular dynamics simulations, have become crucial tools for MOF research. These methods can predict the structural stability, adsorption properties, and catalytic activity of MOFs, simulate experimental processes, and guide experimental design to optimize the structure and performance of MOFs. Nevertheless, first-principles calculations face challenges of high computational costs and lengthy computations when dealing with large-scale systems or complex processes. Additionally, the accuracy of the calculation results is influenced by the selection of exchange-correlation functionals and basis sets. With advancements in computational techniques, it is anticipated that more accurate and efficient computational models will emerge to address the challenges in MOF research. These advancements will further drive the applications of MOFs in various fields, promoting the development of materials science. This review summarizes the frontier research progress of MOFs and their practical applications combined with theoretical calculations, while also discussing the limitations of first-principles in MOF research. Future research directions include the development of more accurate and efficient computational models to address the challenges in MOF research, driven by the enhancement of computational capabilities and methodological improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kkkkk发布了新的文献求助10
刚刚
刚刚
在水一方应助如意宛秋采纳,获得10
1秒前
1秒前
冷晴发布了新的文献求助30
2秒前
3秒前
ting完成签到 ,获得积分10
4秒前
PHW发布了新的文献求助10
4秒前
5秒前
Hlinc发布了新的文献求助30
5秒前
6秒前
7秒前
GBRUCE完成签到,获得积分10
7秒前
万能图书馆应助孙萌萌采纳,获得10
8秒前
8秒前
yyy完成签到 ,获得积分10
9秒前
小乐比完成签到,获得积分10
9秒前
9秒前
bzp完成签到,获得积分10
9秒前
Jiayou Zhang完成签到,获得积分10
10秒前
清脆饼干发布了新的文献求助10
10秒前
聪慧的白猫完成签到,获得积分10
10秒前
WWW发布了新的文献求助10
10秒前
11秒前
13秒前
lll完成签到,获得积分10
14秒前
徐徐完成签到,获得积分10
14秒前
15秒前
15秒前
HTY发布了新的文献求助10
15秒前
16秒前
满意的蜗牛完成签到 ,获得积分10
16秒前
16秒前
hbpu230701发布了新的文献求助10
16秒前
16秒前
yiyi关注了科研通微信公众号
16秒前
jason0023完成签到,获得积分10
17秒前
习惯ing发布了新的文献求助10
17秒前
哈哈哈哈哈哈哈完成签到 ,获得积分10
18秒前
香蕉觅云应助执着的酒窝采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643099
求助须知:如何正确求助?哪些是违规求助? 4760606
关于积分的说明 15020012
捐赠科研通 4801508
什么是DOI,文献DOI怎么找? 2566806
邀请新用户注册赠送积分活动 1524714
关于科研通互助平台的介绍 1484256