Metal-Organic Frameworks: Advances in First-Principles Computational Studies on Catalysis, Adsorption, and Energy Storage

材料科学 吸附 金属有机骨架 生化工程 计算模型 纳米技术 计算机科学 系统工程 有机化学 人工智能 工程类 化学
作者
Junqi Peng,Yingna Zhao,Xiaoyu Wang,Xiongfeng Zeng,Jiansheng Wang,Suoxia Hou
出处
期刊:Materials today communications [Elsevier]
卷期号:40: 109780-109780 被引量:13
标识
DOI:10.1016/j.mtcomm.2024.109780
摘要

Metal-organic frameworks (MOFs) have exhibited tremendous potential in catalysis, gas storage, drug delivery, and sensing due to their high surface area, high porosity, and tunability. MOFs are constructed from metal ions or clusters connected by organic ligands, offering scientists extensive research possibilities owing to their diversity and complexity. However, the diversity of MOFs also presents challenges in stability and controllability, particularly concerning instability or structural changes under varying environmental conditions. Theoretical calculations, especially first-principles calculations and molecular dynamics simulations, have become crucial tools for MOF research. These methods can predict the structural stability, adsorption properties, and catalytic activity of MOFs, simulate experimental processes, and guide experimental design to optimize the structure and performance of MOFs. Nevertheless, first-principles calculations face challenges of high computational costs and lengthy computations when dealing with large-scale systems or complex processes. Additionally, the accuracy of the calculation results is influenced by the selection of exchange-correlation functionals and basis sets. With advancements in computational techniques, it is anticipated that more accurate and efficient computational models will emerge to address the challenges in MOF research. These advancements will further drive the applications of MOFs in various fields, promoting the development of materials science. This review summarizes the frontier research progress of MOFs and their practical applications combined with theoretical calculations, while also discussing the limitations of first-principles in MOF research. Future research directions include the development of more accurate and efficient computational models to address the challenges in MOF research, driven by the enhancement of computational capabilities and methodological improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenna完成签到 ,获得积分10
刚刚
迷人的初阳完成签到 ,获得积分20
刚刚
刚刚
1秒前
FashionBoy应助水蜜桃采纳,获得10
1秒前
clear完成签到,获得积分20
2秒前
3秒前
Ting完成签到 ,获得积分10
3秒前
Ava应助鱼仔采纳,获得10
3秒前
贰什柒发布了新的文献求助10
3秒前
小兔叽发布了新的文献求助10
3秒前
4秒前
xhuang发布了新的文献求助10
4秒前
shinn发布了新的文献求助10
4秒前
4秒前
4秒前
英姑应助Tiamo采纳,获得10
5秒前
momo完成签到,获得积分10
6秒前
共享精神应助无奈秋双采纳,获得10
6秒前
大蛋老师应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
Stella应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得30
8秒前
充电宝应助hh采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
科研通AI6应助xhao采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593517
求助须知:如何正确求助?哪些是违规求助? 4679389
关于积分的说明 14809850
捐赠科研通 4644255
什么是DOI,文献DOI怎么找? 2534483
邀请新用户注册赠送积分活动 1502597
关于科研通互助平台的介绍 1469366