Metal-Organic Frameworks: Advances in First-Principles Computational Studies on Catalysis, Adsorption, and Energy Storage

材料科学 吸附 金属有机骨架 生化工程 计算模型 纳米技术 计算机科学 系统工程 有机化学 人工智能 化学 工程类
作者
Junqi Peng,Yingna Zhao,Xiaoyu Wang,Xiongfeng Zeng,Jiansheng Wang,Suoxia Hou
出处
期刊:Materials today communications [Elsevier]
卷期号:40: 109780-109780 被引量:13
标识
DOI:10.1016/j.mtcomm.2024.109780
摘要

Metal-organic frameworks (MOFs) have exhibited tremendous potential in catalysis, gas storage, drug delivery, and sensing due to their high surface area, high porosity, and tunability. MOFs are constructed from metal ions or clusters connected by organic ligands, offering scientists extensive research possibilities owing to their diversity and complexity. However, the diversity of MOFs also presents challenges in stability and controllability, particularly concerning instability or structural changes under varying environmental conditions. Theoretical calculations, especially first-principles calculations and molecular dynamics simulations, have become crucial tools for MOF research. These methods can predict the structural stability, adsorption properties, and catalytic activity of MOFs, simulate experimental processes, and guide experimental design to optimize the structure and performance of MOFs. Nevertheless, first-principles calculations face challenges of high computational costs and lengthy computations when dealing with large-scale systems or complex processes. Additionally, the accuracy of the calculation results is influenced by the selection of exchange-correlation functionals and basis sets. With advancements in computational techniques, it is anticipated that more accurate and efficient computational models will emerge to address the challenges in MOF research. These advancements will further drive the applications of MOFs in various fields, promoting the development of materials science. This review summarizes the frontier research progress of MOFs and their practical applications combined with theoretical calculations, while also discussing the limitations of first-principles in MOF research. Future research directions include the development of more accurate and efficient computational models to address the challenges in MOF research, driven by the enhancement of computational capabilities and methodological improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助李治稳采纳,获得10
1秒前
1秒前
支舟完成签到,获得积分10
1秒前
乐乐应助七个丸子采纳,获得10
2秒前
2秒前
XIELI完成签到 ,获得积分10
2秒前
科研通AI2S应助辛雨凡采纳,获得10
4秒前
5秒前
科研通AI6应助温暖千兰采纳,获得10
5秒前
5秒前
科研通AI6应助YHY采纳,获得10
5秒前
sunwei完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
顾矜应助陈陈采纳,获得10
5秒前
6秒前
9秒前
明芬发布了新的文献求助10
9秒前
blueslow发布了新的文献求助10
9秒前
123456发布了新的文献求助20
9秒前
彪壮的如柏完成签到,获得积分20
11秒前
顺利兰发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
尼i发布了新的文献求助10
13秒前
13秒前
L.G.Y完成签到 ,获得积分10
14秒前
14秒前
小肆完成签到 ,获得积分10
15秒前
一三二五七完成签到 ,获得积分10
15秒前
晚枫歌完成签到,获得积分10
15秒前
15秒前
天天快乐应助金垚采纳,获得10
17秒前
blueslow完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
丘比特应助Summer采纳,获得10
21秒前
21秒前
hyx完成签到,获得积分10
21秒前
DT完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675597
求助须知:如何正确求助?哪些是违规求助? 4947581
关于积分的说明 15153918
捐赠科研通 4834916
什么是DOI,文献DOI怎么找? 2589694
邀请新用户注册赠送积分活动 1543483
关于科研通互助平台的介绍 1501233