Metal-Organic Frameworks: Advances in First-Principles Computational Studies on Catalysis, Adsorption, and Energy Storage

材料科学 吸附 金属有机骨架 生化工程 计算模型 纳米技术 计算机科学 系统工程 有机化学 人工智能 工程类 化学
作者
Junqi Peng,Yingna Zhao,Xiaoyu Wang,Xiongfeng Zeng,Jiansheng Wang,Suoxia Hou
出处
期刊:Materials today communications [Elsevier BV]
卷期号:40: 109780-109780 被引量:13
标识
DOI:10.1016/j.mtcomm.2024.109780
摘要

Metal-organic frameworks (MOFs) have exhibited tremendous potential in catalysis, gas storage, drug delivery, and sensing due to their high surface area, high porosity, and tunability. MOFs are constructed from metal ions or clusters connected by organic ligands, offering scientists extensive research possibilities owing to their diversity and complexity. However, the diversity of MOFs also presents challenges in stability and controllability, particularly concerning instability or structural changes under varying environmental conditions. Theoretical calculations, especially first-principles calculations and molecular dynamics simulations, have become crucial tools for MOF research. These methods can predict the structural stability, adsorption properties, and catalytic activity of MOFs, simulate experimental processes, and guide experimental design to optimize the structure and performance of MOFs. Nevertheless, first-principles calculations face challenges of high computational costs and lengthy computations when dealing with large-scale systems or complex processes. Additionally, the accuracy of the calculation results is influenced by the selection of exchange-correlation functionals and basis sets. With advancements in computational techniques, it is anticipated that more accurate and efficient computational models will emerge to address the challenges in MOF research. These advancements will further drive the applications of MOFs in various fields, promoting the development of materials science. This review summarizes the frontier research progress of MOFs and their practical applications combined with theoretical calculations, while also discussing the limitations of first-principles in MOF research. Future research directions include the development of more accurate and efficient computational models to address the challenges in MOF research, driven by the enhancement of computational capabilities and methodological improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
求文献发布了新的文献求助10
2秒前
爆米花应助随缘采纳,获得10
2秒前
Choi完成签到 ,获得积分10
4秒前
4秒前
小巧幼蓉发布了新的文献求助30
5秒前
5秒前
6秒前
Lilian完成签到 ,获得积分10
7秒前
蓝海湾发布了新的文献求助10
7秒前
翻覆发布了新的文献求助10
8秒前
英姑应助chentao采纳,获得10
9秒前
烟花应助麦种采纳,获得10
9秒前
9秒前
爱狗先森完成签到,获得积分10
9秒前
飞天小猫发布了新的文献求助10
10秒前
牛肉面完成签到 ,获得积分10
11秒前
占那个发布了新的文献求助10
11秒前
研友_nPbeR8完成签到,获得积分10
12秒前
爱狗先森发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助150
12秒前
bobo完成签到 ,获得积分10
13秒前
13秒前
13秒前
科研通AI5应助翟翟采纳,获得10
14秒前
14秒前
15秒前
16秒前
杜熙诺发布了新的文献求助10
17秒前
Orange应助搞怪从菡采纳,获得10
18秒前
随缘发布了新的文献求助10
19秒前
洁净艳一发布了新的文献求助10
19秒前
19秒前
ahhhha发布了新的文献求助10
20秒前
飞天小猫完成签到,获得积分20
21秒前
JHY发布了新的文献求助30
21秒前
22秒前
潘道士完成签到 ,获得积分10
22秒前
彭于晏应助不见高山采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062391
求助须知:如何正确求助?哪些是违规求助? 4286213
关于积分的说明 13356619
捐赠科研通 4104063
什么是DOI,文献DOI怎么找? 2247268
邀请新用户注册赠送积分活动 1252843
关于科研通互助平台的介绍 1183792