Validation of an Electronic Health Record–Based Machine Learning Model Compared With Clinical Risk Scores for Gastrointestinal Bleeding

胃肠道出血 电子健康档案 便血 急诊科 接收机工作特性 医学 弗雷明翰风险评分 急诊医学 队列 急诊分诊台 曲线下面积 机器学习 结肠镜检查 计算机科学 内科学 医疗保健 经济 经济增长 结直肠癌 疾病 癌症 精神科
作者
Dennis Shung,Colleen Chan,Kisung You,Shinpei Nakamura,Theo Saarinen,Neil S. Zheng,Michael Simonov,Darrick K. Li,Cynthia Tsay,Yuki I. Kawamura,Matthew Shen,Allen Hsiao,Jasjeet S. Sekhon,Loren Laine
出处
期刊:Gastroenterology [Elsevier]
卷期号:167 (6): 1198-1212
标识
DOI:10.1053/j.gastro.2024.06.030
摘要

Abstract

Background & Aims

Guidelines recommend use of risk stratification scores for patients presenting with gastrointestinal bleeding (GIB) to identify very-low-risk patients eligible for discharge from emergency departments. Machine learning models may outperform existing scores and can be integrated within the electronic health record (EHR) to provide real-time risk assessment without manual data entry. We present the first EHR-based machine learning model for GIB.

Methods

The training cohort comprised 2,546 patients and internal validation of 850 patients presenting with overt GIB (hematemesis, melena, hematochezia) to emergency departments of 2 hospitals from 2014-2019. External validation was performed on 926 patients presenting to a different hospital with the same EHR from 2014-2019. The primary outcome was a composite of red-blood-cell transfusion, hemostatic intervention (endoscopic, interventional radiologic, or surgical), and 30-day all-cause mortality. We used structured data fields in the EHR available within 4 hours of presentation and compared performance of machine learning models to current guideline-recommended risk scores, Glasgow-Blatchford Score (GBS) and Oakland Score. Primary analysis was area under the receiver-operating-characteristic curve (AUC). Secondary analysis was specificity at 99% sensitivity to assess proportion of patients correctly identified as very-low-risk.

Results

The machine learning model outperformed the GBS (AUC=0.92 vs. 0.89;p<0.001) and Oakland score (AUC=0.92 vs. 0.89;p<0.001). At the very-low-risk threshold of 99% sensitivity, the machine learning model identified more very-low-risk patients: 37.9% vs. 18.5% for GBS and 11.7% for Oakland score (p<0.001 for both comparisons).

Conclusions

An EHR-based machine learning model performs better than currently recommended clinical risk scores and identifies more very-low-risk patients eligible for discharge from the emergency department.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Xxx发布了新的文献求助10
2秒前
FashionBoy应助于是真的采纳,获得150
2秒前
2秒前
犹豫酸奶完成签到,获得积分10
3秒前
高刘田完成签到,获得积分10
3秒前
哭泣大米完成签到 ,获得积分20
5秒前
cccr02完成签到 ,获得积分10
5秒前
怡然的幻灵完成签到,获得积分10
5秒前
117318发布了新的文献求助10
5秒前
hh发布了新的文献求助10
6秒前
快乐科研发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
dy发布了新的文献求助100
8秒前
天天快乐应助於如风采纳,获得10
8秒前
9秒前
NexusExplorer应助scb采纳,获得10
9秒前
9秒前
清秀白梦完成签到 ,获得积分10
11秒前
glimmen完成签到,获得积分10
11秒前
11秒前
詹姆斯发布了新的文献求助10
11秒前
haimianbaobao完成签到 ,获得积分10
12秒前
脑洞疼应助Xxx采纳,获得10
12秒前
fan_alive完成签到,获得积分10
12秒前
华仔应助小新采纳,获得10
12秒前
gkhsdvkb完成签到,获得积分10
13秒前
粽子完成签到,获得积分10
13秒前
bsusse发布了新的文献求助10
14秒前
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
8R60d8应助科研通管家采纳,获得10
16秒前
L77发布了新的文献求助10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170569
求助须知:如何正确求助?哪些是违规求助? 2821667
关于积分的说明 7935825
捐赠科研通 2482104
什么是DOI,文献DOI怎么找? 1322285
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608