Machine learning models based on CT radiomics features for distinguishing benign and malignant vertebral compression fractures in patients with malignant tumors

医学 无线电技术 接收机工作特性 放射科 内科学
作者
Yuan Wan,Lei Miao,Huanhuan Zhang,Yanmei Wang,Xiao Li,Meng Li,Li Zhang
出处
期刊:Acta Radiologica [SAGE Publishing]
标识
DOI:10.1177/02841851241279896
摘要

Background Radiomics has become an important tool for distinguishing benign and malignant vertebral compression fractures (VCFs). It is more clinically significant to concentrate on patients who have malignant tumors and differentiate between benign and malignant VCFs. Purpose To explore the value of multiple machine learning (ML) models based on CT radiomics features for differentiating benign and malignant VCFs in patients with malignant tumors. Material and Methods This study retrospectively analyzed 78 patients with malignant tumors accompanied by VCFs, 45 patients with benign VCFs, and 33 patients with malignant VCFs. A total of 140 lesions (86 benign lesions, 54 malignant lesions) were ultimately included in this study. All patients were divided into training sets (n = 98) and validation sets (n = 42) according to the 7:3 ratio. The radiomics features were screened and dimensioned, and multiple radiomics ML models were constructed. The receiver operating characteristic (ROC) curve was performed to assess the diagnostic performance. Results Five radiomics features were included in the model. All the ML models built have good diagnostic efficiency, among which the support vector machine (SVM) model performs better. The area under the curve (AUC), sensitivity, specificity, and accuracy in the training set were 0.908, 0.816, 0.883, and 0.857, respectively, while those in the validation set were 0.911, 0.647, 0.92, and 0.81, respectively. Conclusion A variety of ML models built based on CT radiomics features have good value for differentiating benign and malignant VCFs in malignant tumor patients, and the SVM model has a better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
merlideng完成签到,获得积分10
刚刚
刚刚
坦率的万言完成签到,获得积分10
1秒前
小兔发布了新的文献求助10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得30
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
花生辣鱼发布了新的文献求助10
1秒前
黄bb应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
苹果柜子发布了新的文献求助20
2秒前
2秒前
Akim应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
yjwang发布了新的文献求助10
3秒前
monitor完成签到,获得积分20
3秒前
3秒前
和谐飞飞完成签到,获得积分10
4秒前
woodenfish完成签到,获得积分20
4秒前
所所应助WangSiwei采纳,获得10
4秒前
xiekai301发布了新的文献求助10
5秒前
YJH发布了新的文献求助10
5秒前
233完成签到,获得积分10
5秒前
wr781586发布了新的文献求助20
5秒前
6秒前
小蘑菇应助monitor采纳,获得10
6秒前
7秒前
7秒前
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958507
求助须知:如何正确求助?哪些是违规求助? 3504843
关于积分的说明 11120375
捐赠科研通 3236122
什么是DOI,文献DOI怎么找? 1788663
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802642