Machine learning models based on CT radiomics features for distinguishing benign and malignant vertebral compression fractures in patients with malignant tumors

医学 无线电技术 接收机工作特性 放射科 内科学
作者
Yuan Wan,Lei Miao,Huanhuan Zhang,Yanmei Wang,Xiao Li,Meng Li,Li Zhang
出处
期刊:Acta Radiologica [SAGE]
标识
DOI:10.1177/02841851241279896
摘要

Background Radiomics has become an important tool for distinguishing benign and malignant vertebral compression fractures (VCFs). It is more clinically significant to concentrate on patients who have malignant tumors and differentiate between benign and malignant VCFs. Purpose To explore the value of multiple machine learning (ML) models based on CT radiomics features for differentiating benign and malignant VCFs in patients with malignant tumors. Material and Methods This study retrospectively analyzed 78 patients with malignant tumors accompanied by VCFs, 45 patients with benign VCFs, and 33 patients with malignant VCFs. A total of 140 lesions (86 benign lesions, 54 malignant lesions) were ultimately included in this study. All patients were divided into training sets (n = 98) and validation sets (n = 42) according to the 7:3 ratio. The radiomics features were screened and dimensioned, and multiple radiomics ML models were constructed. The receiver operating characteristic (ROC) curve was performed to assess the diagnostic performance. Results Five radiomics features were included in the model. All the ML models built have good diagnostic efficiency, among which the support vector machine (SVM) model performs better. The area under the curve (AUC), sensitivity, specificity, and accuracy in the training set were 0.908, 0.816, 0.883, and 0.857, respectively, while those in the validation set were 0.911, 0.647, 0.92, and 0.81, respectively. Conclusion A variety of ML models built based on CT radiomics features have good value for differentiating benign and malignant VCFs in malignant tumor patients, and the SVM model has a better performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
劲秉应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
守护最好的坤坤完成签到,获得积分10
5秒前
echo完成签到 ,获得积分10
5秒前
111完成签到 ,获得积分10
11秒前
llll完成签到 ,获得积分10
11秒前
劲秉应助爱吃小龙虾采纳,获得150
13秒前
奇博士完成签到,获得积分10
13秒前
LJ_2完成签到 ,获得积分10
14秒前
和平完成签到 ,获得积分10
17秒前
背后雨柏完成签到 ,获得积分10
25秒前
兔子先生完成签到,获得积分10
31秒前
33秒前
活泼山雁完成签到,获得积分10
35秒前
jjy完成签到,获得积分10
37秒前
su完成签到 ,获得积分10
38秒前
40秒前
小文子完成签到 ,获得积分10
43秒前
中恐完成签到,获得积分10
44秒前
44秒前
g0123完成签到,获得积分10
47秒前
kemal完成签到,获得积分10
55秒前
爱吃小龙虾完成签到,获得积分10
57秒前
myg123完成签到 ,获得积分10
59秒前
59秒前
大壳完成签到 ,获得积分10
1分钟前
1分钟前
爱吃小龙虾发布了新的文献求助150
1分钟前
1分钟前
爱书儿的小周完成签到,获得积分10
1分钟前
米共完成签到 ,获得积分10
1分钟前
自来完成签到 ,获得积分10
1分钟前
vesper完成签到,获得积分10
1分钟前
Bethune124完成签到 ,获得积分10
1分钟前
1分钟前
minuxSCI完成签到,获得积分10
1分钟前
传奇3应助骄傲yy采纳,获得10
1分钟前
燕山堂完成签到 ,获得积分0
1分钟前
qiuqiu完成签到 ,获得积分10
1分钟前
温婉的夏烟完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360134
求助须知:如何正确求助?哪些是违规求助? 2982678
关于积分的说明 8704677
捐赠科研通 2664481
什么是DOI,文献DOI怎么找? 1459080
科研通“疑难数据库(出版商)”最低求助积分说明 675400
邀请新用户注册赠送积分活动 666447