QuadMamba: Learning Quadtree-based Selective Scan for Visual State Space Model

四叉树 计算机科学 空格(标点符号) 人工智能 状态空间 计算机视觉 国家(计算机科学) 计算机图形学(图像) 算法 数学 统计 操作系统
作者
Fei Xie,Weijia Zhang,Zhongdao Wang,Chao Ma
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.06806
摘要

Recent advancements in State Space Models, notably Mamba, have demonstrated superior performance over the dominant Transformer models, particularly in reducing the computational complexity from quadratic to linear. Yet, difficulties in adapting Mamba from language to vision tasks arise due to the distinct characteristics of visual data, such as the spatial locality and adjacency within images and large variations in information granularity across visual tokens. Existing vision Mamba approaches either flatten tokens into sequences in a raster scan fashion, which breaks the local adjacency of images, or manually partition tokens into windows, which limits their long-range modeling and generalization capabilities. To address these limitations, we present a new vision Mamba model, coined QuadMamba, that effectively captures local dependencies of varying granularities via quadtree-based image partition and scan. Concretely, our lightweight quadtree-based scan module learns to preserve the 2D locality of spatial regions within learned window quadrants. The module estimates the locality score of each token from their features, before adaptively partitioning tokens into window quadrants. An omnidirectional window shifting scheme is also introduced to capture more intact and informative features across different local regions. To make the discretized quadtree partition end-to-end trainable, we further devise a sequence masking strategy based on Gumbel-Softmax and its straight-through gradient estimator. Extensive experiments demonstrate that QuadMamba achieves state-of-the-art performance in various vision tasks, including image classification, object detection, instance segmentation, and semantic segmentation. The code is in https://github.com/VISION-SJTU/QuadMamba.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伙伴发布了新的文献求助10
刚刚
刚刚
科研通AI2S应助liang采纳,获得10
刚刚
Akim应助liang采纳,获得10
刚刚
bbj完成签到,获得积分10
1秒前
1秒前
HY兑完成签到,获得积分10
1秒前
寻道图强应助柏柏采纳,获得30
1秒前
清秀的大山完成签到,获得积分10
1秒前
3秒前
3秒前
Ashley完成签到,获得积分10
3秒前
3秒前
啊哈哈完成签到,获得积分10
3秒前
lcy完成签到,获得积分10
3秒前
bzy发布了新的文献求助10
3秒前
REN应助zpy采纳,获得10
3秒前
3秒前
许不让完成签到,获得积分10
4秒前
wanci应助平常的白猫采纳,获得10
5秒前
5秒前
5秒前
TTQQ完成签到,获得积分10
5秒前
fly发布了新的文献求助10
6秒前
伙伴完成签到,获得积分10
6秒前
安静达发布了新的文献求助10
6秒前
烟花应助人生若只如初见采纳,获得10
6秒前
hyx9504发布了新的文献求助10
7秒前
7秒前
7秒前
包子给包子的求助进行了留言
7秒前
唐咩咩咩完成签到,获得积分10
8秒前
8秒前
秋雅发布了新的文献求助10
9秒前
9秒前
11秒前
半眠关注了科研通微信公众号
11秒前
STUBLE发布了新的文献求助10
11秒前
有魅力雁蓉完成签到,获得积分10
12秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217320
求助须知:如何正确求助?哪些是违规求助? 2866528
关于积分的说明 8152235
捐赠科研通 2533239
什么是DOI,文献DOI怎么找? 1366165
科研通“疑难数据库(出版商)”最低求助积分说明 644687
邀请新用户注册赠送积分活动 617684