QuadMamba: Learning Quadtree-based Selective Scan for Visual State Space Model

四叉树 计算机科学 空格(标点符号) 人工智能 状态空间 计算机视觉 国家(计算机科学) 计算机图形学(图像) 算法 数学 统计 操作系统
作者
Fei Xie,Weijia Zhang,Zhongdao Wang,Chao Ma
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.06806
摘要

Recent advancements in State Space Models, notably Mamba, have demonstrated superior performance over the dominant Transformer models, particularly in reducing the computational complexity from quadratic to linear. Yet, difficulties in adapting Mamba from language to vision tasks arise due to the distinct characteristics of visual data, such as the spatial locality and adjacency within images and large variations in information granularity across visual tokens. Existing vision Mamba approaches either flatten tokens into sequences in a raster scan fashion, which breaks the local adjacency of images, or manually partition tokens into windows, which limits their long-range modeling and generalization capabilities. To address these limitations, we present a new vision Mamba model, coined QuadMamba, that effectively captures local dependencies of varying granularities via quadtree-based image partition and scan. Concretely, our lightweight quadtree-based scan module learns to preserve the 2D locality of spatial regions within learned window quadrants. The module estimates the locality score of each token from their features, before adaptively partitioning tokens into window quadrants. An omnidirectional window shifting scheme is also introduced to capture more intact and informative features across different local regions. To make the discretized quadtree partition end-to-end trainable, we further devise a sequence masking strategy based on Gumbel-Softmax and its straight-through gradient estimator. Extensive experiments demonstrate that QuadMamba achieves state-of-the-art performance in various vision tasks, including image classification, object detection, instance segmentation, and semantic segmentation. The code is in https://github.com/VISION-SJTU/QuadMamba.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Gakay完成签到,获得积分10
1秒前
1秒前
伍六七完成签到 ,获得积分10
2秒前
张正发布了新的文献求助10
2秒前
3秒前
huang完成签到,获得积分10
3秒前
Enuo发布了新的文献求助10
4秒前
传奇3应助LTT采纳,获得10
4秒前
狂野傲南发布了新的文献求助10
4秒前
初心路完成签到 ,获得积分10
5秒前
5秒前
情怀应助解语花采纳,获得30
5秒前
李健应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
CHENG_2025应助科研通管家采纳,获得20
7秒前
7秒前
jjj应助科研通管家采纳,获得10
7秒前
柯一一应助科研通管家采纳,获得10
7秒前
丫丫发布了新的文献求助10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
柯一一应助科研通管家采纳,获得10
7秒前
柯一一应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
wwwwrrrrr发布了新的文献求助10
8秒前
zm发布了新的文献求助10
8秒前
Lili完成签到,获得积分10
9秒前
10秒前
11秒前
Asurary完成签到 ,获得积分10
11秒前
大模型应助狂野傲南采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498