Development and external validation of a risk prediction model for depression in patients with coronary heart disease

列线图 萧条(经济学) 逻辑回归 全国健康与营养检查调查 随机森林 内科学 人口 医学 统计 机器学习 计算机科学 环境卫生 数学 宏观经济学 经济
作者
Xin-Zheng Hou,Qian Wu,Qianyu Lv,Ying-Tian Yang,Lanlan Li,Xuejiao Ye,Chen-Yan Yang,Yanfei Lv,Shihan Wang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:367: 137-147 被引量:23
标识
DOI:10.1016/j.jad.2024.08.218
摘要

Depression is an independent risk factor for adverse outcomes of coronary heart disease (CHD). This study aimed to develop a depression risk prediction model for CHD patients. This study utilized data from the National Health and Nutrition Examination Survey (NHANES). In the training set, reference literature, logistic regression, LASSO regression, optimal subset algorithm, and machine learning random forest algorithm were employed to screen prediction variables, respectively. The optimal prediction model was selected based on the C-index, Net Reclassification Improvement (NRI), and Integrated Discrimination Improvement (IDI). A nomogram for the optimal prediction model was constructed. 3 external validations were performed. The training set comprised 1375 participants, with a depressive symptoms prevalence of 15.2 %. The optimal prediction model was constructed using predictors obtained from optimal subsets algorithm (C-index = 0.774, sensitivity = 0.751, specificity = 0.685). The model includes age, gender, education, marriage, diabetes, tobacco use, antihypertensive drugs, high-density lipoprotein cholesterol (HDLC), and aspartate aminotransferase (AST). The model demonstrated consistent discrimination ability, accuracy, and clinical utility across the 3 external validations. The applicable population of the model is CHD patients. And the clinical benefits of interventions based on the prediction results are still unknown. We developed a depression risk prediction model for CHD patients, which was presented in the form of a nomogram for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助开朗依霜采纳,获得10
1秒前
喜欢看神仙打架完成签到,获得积分10
1秒前
dingdang完成签到,获得积分10
1秒前
21完成签到 ,获得积分10
1秒前
1秒前
熊尼完成签到,获得积分20
2秒前
3秒前
夏小胖发布了新的文献求助10
3秒前
milk完成签到 ,获得积分10
3秒前
3秒前
3秒前
dm关闭了dm文献求助
4秒前
jojo完成签到 ,获得积分10
4秒前
5秒前
emily完成签到,获得积分20
5秒前
肆_发布了新的文献求助10
5秒前
A132发布了新的文献求助10
5秒前
酷酷的盼山完成签到,获得积分10
6秒前
Eternity2025发布了新的文献求助10
6秒前
multi完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
taster发布了新的文献求助10
8秒前
缓慢妙芙发布了新的文献求助20
8秒前
ctttt发布了新的文献求助10
8秒前
傲娇的康乃馨完成签到,获得积分20
8秒前
8秒前
we1完成签到,获得积分20
9秒前
聂青枫完成签到,获得积分10
9秒前
完美世界应助蕾蕾蕾采纳,获得10
9秒前
WSGQT完成签到,获得积分10
10秒前
qwe完成签到,获得积分10
10秒前
10秒前
科研小白完成签到,获得积分10
10秒前
10秒前
dd发布了新的文献求助10
11秒前
gdh完成签到,获得积分10
11秒前
充电宝应助漫漫亦慢慢采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328