Development and external validation of a risk prediction model for depression in patients with coronary heart disease

列线图 萧条(经济学) 逻辑回归 全国健康与营养检查调查 随机森林 内科学 人口 医学 统计 机器学习 计算机科学 环境卫生 数学 宏观经济学 经济
作者
Xin-Zheng Hou,Qian Wu,Qianyu Lv,Ying-Tian Yang,Lanlan Li,Xuejiao Ye,Chen-Yan Yang,Yanfei Lv,Shihan Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:367: 137-147 被引量:8
标识
DOI:10.1016/j.jad.2024.08.218
摘要

Depression is an independent risk factor for adverse outcomes of coronary heart disease (CHD). This study aimed to develop a depression risk prediction model for CHD patients. This study utilized data from the National Health and Nutrition Examination Survey (NHANES). In the training set, reference literature, logistic regression, LASSO regression, optimal subset algorithm, and machine learning random forest algorithm were employed to screen prediction variables, respectively. The optimal prediction model was selected based on the C-index, Net Reclassification Improvement (NRI), and Integrated Discrimination Improvement (IDI). A nomogram for the optimal prediction model was constructed. 3 external validations were performed. The training set comprised 1375 participants, with a depressive symptoms prevalence of 15.2 %. The optimal prediction model was constructed using predictors obtained from optimal subsets algorithm (C-index = 0.774, sensitivity = 0.751, specificity = 0.685). The model includes age, gender, education, marriage, diabetes, tobacco use, antihypertensive drugs, high-density lipoprotein cholesterol (HDLC), and aspartate aminotransferase (AST). The model demonstrated consistent discrimination ability, accuracy, and clinical utility across the 3 external validations. The applicable population of the model is CHD patients. And the clinical benefits of interventions based on the prediction results are still unknown. We developed a depression risk prediction model for CHD patients, which was presented in the form of a nomogram for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任性的鼠标完成签到,获得积分10
1秒前
背完单词好睡觉完成签到 ,获得积分10
1秒前
wxf完成签到,获得积分10
2秒前
现代寄文发布了新的文献求助10
3秒前
科狸发布了新的文献求助10
3秒前
陈杰发布了新的文献求助10
3秒前
子云完成签到,获得积分10
5秒前
qiqi完成签到,获得积分10
5秒前
小羊完成签到,获得积分10
6秒前
7秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
上官若男应助科研通管家采纳,获得30
9秒前
鸣笛应助科研通管家采纳,获得30
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
Dada应助科研通管家采纳,获得10
9秒前
Dada应助科研通管家采纳,获得10
9秒前
鸣笛应助科研通管家采纳,获得30
9秒前
9秒前
紧张的毛衣完成签到,获得积分10
9秒前
10秒前
pei完成签到,获得积分10
10秒前
灵巧水绿应助小马采纳,获得10
10秒前
快乐的海亦完成签到,获得积分10
12秒前
领导范儿应助快乐的海亦采纳,获得10
14秒前
14秒前
冷傲的白卉完成签到,获得积分10
14秒前
zeno123456完成签到,获得积分10
14秒前
可爱的函函应助文耳东采纳,获得10
15秒前
归海若风发布了新的文献求助10
15秒前
16秒前
18秒前
Lucas应助liuzengzhang666采纳,获得10
19秒前
19秒前
chaoran发布了新的文献求助10
21秒前
苗一夫发布了新的文献求助10
22秒前
22秒前
kyt发布了新的文献求助10
23秒前
大本发布了新的文献求助100
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717