A method of maize seed variety identification based on near-infrared spectroscopy combined with improved DenseNet model

鉴定(生物学) 模式识别(心理学) 降维 卷积神经网络 深度学习 规范化(社会学) 计算机科学 植物 生物 人工智能 人类学 社会学
作者
Haichao Zhou,Haiou Guan,Xiaodan Ma,Bingxue Wei,Yifei Zhang,Yuxin Lu
出处
期刊:Microchemical Journal [Elsevier]
卷期号:206: 111542-111542 被引量:10
标识
DOI:10.1016/j.microc.2024.111542
摘要

The development of a real-time online system for rapid and non-destructive identification of seed varieties can significantly improve production efficiency in modern agriculture. Near-infrared spectroscopy technology has become one of the commonly used techniques in seed variety identification due to its fast and non-destructive characteristics. However, existing convolutional neural networks are difficult to reflect the complex nonlinear relationships of the near-infrared (NIR) spectrum, resulting in poor modeling performance, and their high model complexity is not conducive to real-time online identification tasks. Therefore, this study proposes a maize seed variety identification method using near-infrared spectroscopy technology and lightweight deep learning network (BAC-DenseNet). First, a total of 750 samples from 5 different types of maize seeds were taken as the research object. The spectral data were pre-processing using the SGD2-SNV, and the identification accuracy was improved by an average of 15.78 %. Then, the attraction–repulsion optimization algorithm combined with Laplacian Eigenmaps (AROA-LE) was used to perform dimension reduction on the pre-processed data, and the dimensionality was reduced from 1845 to 66. Finally, a lightweight deep learning network model (BAC-DenseNet) was constructed based on DenseNet-121 network with layer pruning and the introduction of batch channel normalization (BCN), self-attention and convolution mixed module (ACmix) and convolutional block attention module (CBAM). The experimental results show that the proposed BAC-DenseNet model has an identification accuracy of 99.33 %. Compared with the original network and seven other classical deep learning models, the proposed method has an average improvement of 2.83 %, 3.52 %, and 3.47 % in accuracy, Kappa, and MCC, respectively. Meanwhile, Params, Size, and FLOPs decreased by an average of 9.09 M, 35.08 MB, and 88.66 M, respectively. This method offered high accuracy and reliability in maize seed variety identification, which can provide qualitative indicators for the breeding, planting, and management of maize seed varieties. This study can provide a reference method for variety identification of other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无000发布了新的文献求助10
1秒前
summer发布了新的文献求助10
1秒前
hh发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
芳芳子呀完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
HY发布了新的文献求助10
3秒前
佟鹭其完成签到 ,获得积分10
4秒前
6秒前
樊芙宾发布了新的文献求助10
7秒前
大个应助liuzengzhang666采纳,获得30
7秒前
8秒前
8秒前
10秒前
善学以致用应助summer采纳,获得10
10秒前
清爽语柳完成签到,获得积分10
11秒前
11秒前
不倦应助kevinchan2009采纳,获得10
11秒前
对称破缺发布了新的文献求助10
13秒前
14秒前
Yin完成签到,获得积分10
14秒前
15秒前
16秒前
杨小鸿发布了新的文献求助10
16秒前
清爽语柳发布了新的文献求助10
16秒前
可爱的函函应助王子采纳,获得10
17秒前
huangyu完成签到,获得积分10
17秒前
yy发布了新的文献求助10
17秒前
魁魁完成签到,获得积分10
17秒前
18秒前
wuming发布了新的文献求助10
18秒前
情怀应助ffy采纳,获得10
19秒前
Eden发布了新的文献求助10
20秒前
jiang发布了新的文献求助10
21秒前
pluto完成签到,获得积分0
21秒前
22秒前
三块石头完成签到,获得积分10
23秒前
君故关注了科研通微信公众号
24秒前
25秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060