亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A method of maize seed variety identification based on near-infrared spectroscopy combined with improved DenseNet model

鉴定(生物学) 模式识别(心理学) 降维 卷积神经网络 深度学习 规范化(社会学) 计算机科学 植物 生物 人工智能 人类学 社会学
作者
Haichao Zhou,Haiou Guan,Xiaodan Ma,Bingxue Wei,Yifei Zhang,Yuxin Lu
出处
期刊:Microchemical Journal [Elsevier]
卷期号:206: 111542-111542
标识
DOI:10.1016/j.microc.2024.111542
摘要

The development of a real-time online system for rapid and non-destructive identification of seed varieties can significantly improve production efficiency in modern agriculture. Near-infrared spectroscopy technology has become one of the commonly used techniques in seed variety identification due to its fast and non-destructive characteristics. However, existing convolutional neural networks are difficult to reflect the complex nonlinear relationships of the near-infrared (NIR) spectrum, resulting in poor modeling performance, and their high model complexity is not conducive to real-time online identification tasks. Therefore, this study proposes a maize seed variety identification method using near-infrared spectroscopy technology and lightweight deep learning network (BAC-DenseNet). First, a total of 750 samples from 5 different types of maize seeds were taken as the research object. The spectral data were pre-processing using the SGD2-SNV, and the identification accuracy was improved by an average of 15.78 %. Then, the attraction–repulsion optimization algorithm combined with Laplacian Eigenmaps (AROA-LE) was used to perform dimension reduction on the pre-processed data, and the dimensionality was reduced from 1845 to 66. Finally, a lightweight deep learning network model (BAC-DenseNet) was constructed based on DenseNet-121 network with layer pruning and the introduction of batch channel normalization (BCN), self-attention and convolution mixed module (ACmix) and convolutional block attention module (CBAM). The experimental results show that the proposed BAC-DenseNet model has an identification accuracy of 99.33 %. Compared with the original network and seven other classical deep learning models, the proposed method has an average improvement of 2.83 %, 3.52 %, and 3.47 % in accuracy, Kappa, and MCC, respectively. Meanwhile, Params, Size, and FLOPs decreased by an average of 9.09 M, 35.08 MB, and 88.66 M, respectively. This method offered high accuracy and reliability in maize seed variety identification, which can provide qualitative indicators for the breeding, planting, and management of maize seed varieties. This study can provide a reference method for variety identification of other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
9秒前
chenyuns发布了新的文献求助20
11秒前
27秒前
搜集达人应助lourahan采纳,获得10
33秒前
45秒前
chenyuns发布了新的文献求助20
48秒前
55秒前
lourahan发布了新的文献求助10
1分钟前
1分钟前
chenyuns发布了新的文献求助20
1分钟前
2分钟前
所所应助Hey采纳,获得10
2分钟前
2分钟前
宅心仁厚完成签到 ,获得积分10
2分钟前
3分钟前
充电宝应助liuyuannzhuo采纳,获得10
3分钟前
英俊的铭应助evermore采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
腰果虾仁完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
evermore发布了新的文献求助10
4分钟前
5分钟前
李健应助chenyuns采纳,获得20
5分钟前
5分钟前
华仔应助Benhnhk21采纳,获得10
5分钟前
chenyuns发布了新的文献求助20
5分钟前
万能图书馆应助evermore采纳,获得10
5分钟前
chenyuns完成签到,获得积分10
5分钟前
5分钟前
Benhnhk21发布了新的文献求助10
5分钟前
6分钟前
FashionBoy应助科研通管家采纳,获得10
6分钟前
半糖神仙完成签到 ,获得积分20
6分钟前
6分钟前
liuyuannzhuo发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146746
求助须知:如何正确求助?哪些是违规求助? 2798061
关于积分的说明 7826593
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527