清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A method of maize seed variety identification based on near-infrared spectroscopy combined with improved DenseNet model

鉴定(生物学) 模式识别(心理学) 降维 卷积神经网络 深度学习 规范化(社会学) 计算机科学 植物 生物 人工智能 人类学 社会学
作者
Haichao Zhou,Haiou Guan,Xiaodan Ma,Bingxue Wei,Yifei Zhang,Yuxin Lu
出处
期刊:Microchemical Journal [Elsevier]
卷期号:206: 111542-111542 被引量:10
标识
DOI:10.1016/j.microc.2024.111542
摘要

The development of a real-time online system for rapid and non-destructive identification of seed varieties can significantly improve production efficiency in modern agriculture. Near-infrared spectroscopy technology has become one of the commonly used techniques in seed variety identification due to its fast and non-destructive characteristics. However, existing convolutional neural networks are difficult to reflect the complex nonlinear relationships of the near-infrared (NIR) spectrum, resulting in poor modeling performance, and their high model complexity is not conducive to real-time online identification tasks. Therefore, this study proposes a maize seed variety identification method using near-infrared spectroscopy technology and lightweight deep learning network (BAC-DenseNet). First, a total of 750 samples from 5 different types of maize seeds were taken as the research object. The spectral data were pre-processing using the SGD2-SNV, and the identification accuracy was improved by an average of 15.78 %. Then, the attraction–repulsion optimization algorithm combined with Laplacian Eigenmaps (AROA-LE) was used to perform dimension reduction on the pre-processed data, and the dimensionality was reduced from 1845 to 66. Finally, a lightweight deep learning network model (BAC-DenseNet) was constructed based on DenseNet-121 network with layer pruning and the introduction of batch channel normalization (BCN), self-attention and convolution mixed module (ACmix) and convolutional block attention module (CBAM). The experimental results show that the proposed BAC-DenseNet model has an identification accuracy of 99.33 %. Compared with the original network and seven other classical deep learning models, the proposed method has an average improvement of 2.83 %, 3.52 %, and 3.47 % in accuracy, Kappa, and MCC, respectively. Meanwhile, Params, Size, and FLOPs decreased by an average of 9.09 M, 35.08 MB, and 88.66 M, respectively. This method offered high accuracy and reliability in maize seed variety identification, which can provide qualitative indicators for the breeding, planting, and management of maize seed varieties. This study can provide a reference method for variety identification of other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
大医仁心完成签到 ,获得积分10
15秒前
15秒前
Dasein完成签到 ,获得积分10
21秒前
领导范儿应助轻松的幻然采纳,获得10
28秒前
两个榴莲完成签到,获得积分0
28秒前
zxcvvbb1001完成签到 ,获得积分10
29秒前
31秒前
朗源Wu发布了新的文献求助200
38秒前
朗源Wu完成签到,获得积分10
48秒前
uupp完成签到,获得积分10
1分钟前
郭磊完成签到 ,获得积分10
1分钟前
赘婿应助whynot采纳,获得10
1分钟前
1分钟前
whynot发布了新的文献求助10
1分钟前
1分钟前
Orange应助whynot采纳,获得10
1分钟前
xiaoblue完成签到,获得积分10
2分钟前
2分钟前
whynot发布了新的文献求助10
2分钟前
华仔应助whynot采纳,获得10
2分钟前
2分钟前
2分钟前
Chloe完成签到,获得积分10
2分钟前
科研通AI6应助xixi采纳,获得10
3分钟前
3分钟前
whynot发布了新的文献求助10
3分钟前
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
celinewu完成签到,获得积分10
4分钟前
xixi完成签到,获得积分20
4分钟前
xixi发布了新的文献求助10
4分钟前
tt完成签到,获得积分10
4分钟前
CRUSADER发布了新的文献求助10
4分钟前
合不着完成签到 ,获得积分10
4分钟前
CRUSADER完成签到,获得积分10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Jayzie完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5314337
求助须知:如何正确求助?哪些是违规求助? 4457467
关于积分的说明 13867877
捐赠科研通 4346638
什么是DOI,文献DOI怎么找? 2387254
邀请新用户注册赠送积分活动 1381408
关于科研通互助平台的介绍 1350365