A method of maize seed variety identification based on near-infrared spectroscopy combined with improved DenseNet model

鉴定(生物学) 模式识别(心理学) 降维 卷积神经网络 深度学习 规范化(社会学) 计算机科学 植物 生物 人工智能 人类学 社会学
作者
Haichao Zhou,Haiou Guan,Xiaodan Ma,Bingxue Wei,Yifei Zhang,Yuxin Lu
出处
期刊:Microchemical Journal [Elsevier]
卷期号:206: 111542-111542
标识
DOI:10.1016/j.microc.2024.111542
摘要

The development of a real-time online system for rapid and non-destructive identification of seed varieties can significantly improve production efficiency in modern agriculture. Near-infrared spectroscopy technology has become one of the commonly used techniques in seed variety identification due to its fast and non-destructive characteristics. However, existing convolutional neural networks are difficult to reflect the complex nonlinear relationships of the near-infrared (NIR) spectrum, resulting in poor modeling performance, and their high model complexity is not conducive to real-time online identification tasks. Therefore, this study proposes a maize seed variety identification method using near-infrared spectroscopy technology and lightweight deep learning network (BAC-DenseNet). First, a total of 750 samples from 5 different types of maize seeds were taken as the research object. The spectral data were pre-processing using the SGD2-SNV, and the identification accuracy was improved by an average of 15.78 %. Then, the attraction–repulsion optimization algorithm combined with Laplacian Eigenmaps (AROA-LE) was used to perform dimension reduction on the pre-processed data, and the dimensionality was reduced from 1845 to 66. Finally, a lightweight deep learning network model (BAC-DenseNet) was constructed based on DenseNet-121 network with layer pruning and the introduction of batch channel normalization (BCN), self-attention and convolution mixed module (ACmix) and convolutional block attention module (CBAM). The experimental results show that the proposed BAC-DenseNet model has an identification accuracy of 99.33 %. Compared with the original network and seven other classical deep learning models, the proposed method has an average improvement of 2.83 %, 3.52 %, and 3.47 % in accuracy, Kappa, and MCC, respectively. Meanwhile, Params, Size, and FLOPs decreased by an average of 9.09 M, 35.08 MB, and 88.66 M, respectively. This method offered high accuracy and reliability in maize seed variety identification, which can provide qualitative indicators for the breeding, planting, and management of maize seed varieties. This study can provide a reference method for variety identification of other agricultural products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
Krrr发布了新的文献求助10
2秒前
CodeCraft应助含蓄的小熊猫采纳,获得10
3秒前
搞对发布了新的文献求助10
3秒前
3秒前
min完成签到,获得积分10
4秒前
hwl关闭了hwl文献求助
4秒前
4秒前
T012完成签到,获得积分10
4秒前
飘叶随风发布了新的文献求助10
5秒前
共享精神应助杨思睿采纳,获得10
6秒前
6秒前
7秒前
ll完成签到,获得积分10
7秒前
PPSlu发布了新的文献求助10
8秒前
dwls举报777求助涉嫌违规
8秒前
wanci应助黑巧菠萝包采纳,获得10
8秒前
8秒前
8秒前
福崽发布了新的文献求助10
8秒前
BBBB小拳头发布了新的文献求助10
8秒前
wwx发布了新的文献求助10
10秒前
高兴的冰棍完成签到,获得积分10
10秒前
10秒前
小盆呐发布了新的文献求助10
10秒前
10秒前
Owen应助ll采纳,获得10
11秒前
SCZOU发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
今后应助牙牙采纳,获得10
12秒前
Enma发布了新的文献求助10
13秒前
13秒前
学术智子发布了新的文献求助10
13秒前
FY发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444222
求助须知:如何正确求助?哪些是违规求助? 3040268
关于积分的说明 8980686
捐赠科研通 2728913
什么是DOI,文献DOI怎么找? 1496761
科研通“疑难数据库(出版商)”最低求助积分说明 691858
邀请新用户注册赠送积分活动 689393