PCP-GC-LM: single-sequence-based protein contact prediction using dual graph convolutional neural network and convolutional neural network

卷积神经网络 计算机科学 图形 人工智能 模式识别(心理学) 人工神经网络 对偶(语法数字) 计算生物学 理论计算机科学 生物 艺术 文学类
作者
Jiajun Ouyang,Yang Yang,Yang Yang
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05914-3
摘要

Recently, the process of evolution information and the deep learning network has promoted the improvement of protein contact prediction methods. Nevertheless, still remain some bottleneck: (1) One of the bottlenecks is the prediction of orphans and other fewer evolution information proteins. (2) The other bottleneck is the method of predicting single-sequence-based proteins mainly focuses on selecting protein sequence features and tuning the neural network architecture, However, while the deeper neural networks improve prediction accuracy, there is still the problem of increasing the computational burden. Compared with other neural networks in the field of protein prediction, the graph neural network has the following advantages: due to the advantage of revealing the topology structure via graph neural network and being able to take advantage of the hierarchical structure and local connectivity of graph neural networks has certain advantages in capturing the features of different levels of abstraction in protein molecules. When using protein sequence and structure information for joint training, the dependencies between the two kinds of information can be better captured. And it can process protein molecular structures of different lengths and shapes, while traditional neural networks need to convert proteins into fixed-size vectors or matrices for processing. Here, we propose a single-sequence-based protein contact map predictor PCP-GC-LM, with dual-level graph neural networks and convolution networks. Our method performs better with other single-sequence-based predictors in different independent tests. In addition, to verify the validity of our method against complex protein structures, we will also compare it with other methods in two homodimers protein test sets (DeepHomo test dataset and CASP-CAPRI target dataset). Furthermore, we also perform ablation experiments to demonstrate the necessity of a dual graph network. In all, our framework presents new modules to accurately predict inter-chain contact maps in protein and it's also useful to analyze interactions in other types of protein complexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山复尔尔发布了新的文献求助10
刚刚
桐桐应助buerxiaoshen采纳,获得10
1秒前
小二郎应助DDL消失采纳,获得10
1秒前
圣晟胜发布了新的文献求助10
2秒前
nyddyy发布了新的文献求助10
2秒前
2秒前
宝宝巴士完成签到 ,获得积分20
2秒前
赘婿应助多多采纳,获得10
3秒前
mumu完成签到,获得积分10
3秒前
科研通AI2S应助哦啦啦采纳,获得50
3秒前
YH应助哦啦啦采纳,获得50
3秒前
3秒前
XMU2011发布了新的文献求助10
4秒前
4秒前
5秒前
xYueea完成签到,获得积分10
6秒前
6秒前
7秒前
ZJFL发布了新的文献求助10
7秒前
8秒前
jfc发布了新的文献求助10
8秒前
mumu发布了新的文献求助10
9秒前
大头发布了新的文献求助10
9秒前
10秒前
小王同学发布了新的文献求助10
10秒前
执执发布了新的文献求助10
11秒前
12秒前
失眠的雪曼完成签到,获得积分20
12秒前
Owen应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
djiwisksk66应助七月流火采纳,获得10
14秒前
CAOHOU应助Qwe采纳,获得10
17秒前
sci来来来发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952669
求助须知:如何正确求助?哪些是违规求助? 3498162
关于积分的说明 11090517
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349