清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PCP-GC-LM: single-sequence-based protein contact prediction using dual graph convolutional neural network and convolutional neural network

卷积神经网络 计算机科学 图形 人工智能 模式识别(心理学) 人工神经网络 对偶(语法数字) 计算生物学 理论计算机科学 生物 文学类 艺术
作者
Jiajun Ouyang,Yang Yang,Yang Yang
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05914-3
摘要

Recently, the process of evolution information and the deep learning network has promoted the improvement of protein contact prediction methods. Nevertheless, still remain some bottleneck: (1) One of the bottlenecks is the prediction of orphans and other fewer evolution information proteins. (2) The other bottleneck is the method of predicting single-sequence-based proteins mainly focuses on selecting protein sequence features and tuning the neural network architecture, However, while the deeper neural networks improve prediction accuracy, there is still the problem of increasing the computational burden. Compared with other neural networks in the field of protein prediction, the graph neural network has the following advantages: due to the advantage of revealing the topology structure via graph neural network and being able to take advantage of the hierarchical structure and local connectivity of graph neural networks has certain advantages in capturing the features of different levels of abstraction in protein molecules. When using protein sequence and structure information for joint training, the dependencies between the two kinds of information can be better captured. And it can process protein molecular structures of different lengths and shapes, while traditional neural networks need to convert proteins into fixed-size vectors or matrices for processing. Here, we propose a single-sequence-based protein contact map predictor PCP-GC-LM, with dual-level graph neural networks and convolution networks. Our method performs better with other single-sequence-based predictors in different independent tests. In addition, to verify the validity of our method against complex protein structures, we will also compare it with other methods in two homodimers protein test sets (DeepHomo test dataset and CASP-CAPRI target dataset). Furthermore, we also perform ablation experiments to demonstrate the necessity of a dual graph network. In all, our framework presents new modules to accurately predict inter-chain contact maps in protein and it's also useful to analyze interactions in other types of protein complexes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pjxxx完成签到 ,获得积分10
14秒前
DW完成签到 ,获得积分10
17秒前
20秒前
优雅山柏发布了新的文献求助10
24秒前
优雅山柏完成签到,获得积分10
37秒前
zsmj23完成签到 ,获得积分0
1分钟前
cq_2完成签到,获得积分10
1分钟前
qiancib202完成签到,获得积分10
1分钟前
白菜完成签到 ,获得积分10
2分钟前
was_3完成签到,获得积分10
2分钟前
mariawang发布了新的文献求助10
3分钟前
3分钟前
3分钟前
领导范儿应助活泼莫英采纳,获得10
4分钟前
莫冰雪完成签到 ,获得积分10
4分钟前
4分钟前
活泼莫英发布了新的文献求助10
4分钟前
李爱国应助科研通管家采纳,获得10
5分钟前
曾经的彩虹完成签到,获得积分10
5分钟前
5分钟前
ldjldj_2004完成签到 ,获得积分10
5分钟前
mariawang发布了新的文献求助10
5分钟前
5分钟前
翔翔超人发布了新的文献求助10
5分钟前
文静灵阳完成签到 ,获得积分10
6分钟前
翔翔超人发布了新的文献求助10
7分钟前
qianci2009完成签到,获得积分10
7分钟前
黄花菜完成签到 ,获得积分10
8分钟前
zhao完成签到,获得积分10
8分钟前
Otter完成签到,获得积分10
9分钟前
月儿完成签到 ,获得积分10
9分钟前
李歪歪完成签到 ,获得积分10
10分钟前
研友_nxw2xL完成签到,获得积分10
10分钟前
10分钟前
muriel完成签到,获得积分10
11分钟前
冷静新烟发布了新的文献求助10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
脑洞疼应助科研通管家采纳,获得10
11分钟前
imi完成签到 ,获得积分10
11分钟前
脑洞疼应助天空不空采纳,获得10
12分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265576
求助须知:如何正确求助?哪些是违规求助? 2905567
关于积分的说明 8334025
捐赠科研通 2575874
什么是DOI,文献DOI怎么找? 1400173
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532