Diversity-enhanced Conversational Recommendation via Multi-agent Reinforcement Learning

强化学习 计算机科学 多样性(政治) 推荐系统 特征(语言学) 人工智能 过程(计算) 机器学习 光学(聚焦) 社会学 人类学 语言学 哲学 物理 光学 操作系统
作者
Zihan Wang,Feng Shi,Daling Wang,Kaisong Song,Gang Wu,Yifei Zhang,Han Zhao,Yu Ge
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4692909/v1
摘要

Abstract Multi-round Conversational Recommendation (MRCR) system assists users in finding the items they need with the fewest dialogue rounds by inquiring about desired features or making tailored recommendations. Numerous models employ single-agent Reinforcement Learning (RL) to accomplish MRCR and improve recommendation accuracy. However, they overlook the diversity of conversational recommendations and primarily focus on popular features or items. It impacts the fair visibility of the items and results in an unbalanced user experience. We propose a diversity-enhanced conversational recommendation model (DECREC), which is built on our proposed multi-agent RL framework. Three agents col-laboratively determine the actions at each round of the MRCR and each agent autonomously explores and learns distinct facets of the task. Compared to a single agent, their collaboration fosters the exploration of a more extensive array of actions to improve diversity. Furthermore, we introduce a dynamic experience replay method that balances long-tail and head data ensuring each learning batch includes long-tail samples, keeping the model attentive to these less common but important data. Moreover, we integrate feature entropy into the feature value estimation process during training to encourage the model to explore a broader spectrum of features, thereby indirectly enhancing the diversity of recommendation results. Extensive experiments on four public datasets demonstrate that DECREC reduces bias in MRCR and achieves optimal recommendation diversity and accuracy. Our code is available at https://github.com/wzhwzhwzh0921/ DECREC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peterlee发布了新的文献求助10
刚刚
Murphy_H发布了新的文献求助10
刚刚
zhuming完成签到,获得积分10
刚刚
Joe发布了新的文献求助10
1秒前
明理向秋发布了新的文献求助10
1秒前
zzz完成签到,获得积分10
1秒前
Orange应助格格采纳,获得10
1秒前
星辰大海应助Dora采纳,获得30
1秒前
此去经年发布了新的文献求助10
2秒前
2鱼完成签到,获得积分10
2秒前
2秒前
Xdz完成签到 ,获得积分10
3秒前
peterlee完成签到,获得积分10
5秒前
5秒前
lilingyi完成签到,获得积分20
6秒前
Renee完成签到,获得积分10
6秒前
LILING完成签到,获得积分10
7秒前
scc完成签到,获得积分10
7秒前
天天快乐应助beizi采纳,获得10
8秒前
9秒前
lalala应助韶华采纳,获得10
10秒前
bibi完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
13秒前
13秒前
彭于晏应助qaq采纳,获得10
13秒前
13秒前
kyokukou完成签到,获得积分10
14秒前
15秒前
15秒前
yull完成签到,获得积分10
15秒前
16秒前
苹果发布了新的文献求助10
16秒前
Cuddle发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
兔子发布了新的文献求助30
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657791
求助须知:如何正确求助?哪些是违规求助? 3219810
关于积分的说明 9733527
捐赠科研通 2928770
什么是DOI,文献DOI怎么找? 1603674
邀请新用户注册赠送积分活动 756699
科研通“疑难数据库(出版商)”最低求助积分说明 734060