Magnesium Nanoparticles for Surface-Enhanced Raman Scattering and Plasmon-Driven Catalysis

等离子体子 材料科学 拉曼散射 纳米颗粒 表面等离子体子 拉曼光谱 表面等离子共振 局域表面等离子体子 电场 等离子纳米粒子 纳米技术 光电子学 光学 物理 量子力学
作者
Andrey Ten,V. I. Lomonosov,Christina Boukouvala,Emilie Ringe
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (28): 18785-18799 被引量:3
标识
DOI:10.1021/acsnano.4c06858
摘要

Nanostructures of some metals can sustain localized surface plasmon resonances, collective oscillations of free electrons excited by incident light. This effect results in wavelength-dependent absorption and scattering, enhancement of the incident electric field at the metal surface, and generation of hot carriers as a decay product. The enhanced electric field can be utilized to amplify the spectroscopic signal in surface-enhanced Raman scattering (SERS), while hot carriers can be exploited for catalytic applications. In recent years, cheaper and more earth abundant alternatives to traditional plasmonic Au and Ag have gained growing attention. Here, we demonstrate the ability of plasmonic Mg nanoparticles to enhance Raman scattering and drive chemical transformations upon laser irradiation. The plasmonic properties of Mg nanoparticles are characterized at the bulk and single particle level by optical spectroscopy and scanning transmission electron microscopy coupled with electron energy-loss spectroscopy and supported by numerical simulations. SERS enhancement factors of ∼102 at 532 and 633 nm are obtained using 4-mercaptobenzoic acid and 4-nitrobenzenethiol. Furthermore, the reductive coupling of 4-nitrobenzenethiol to 4,4′-dimercaptoazobenzene is observed on the surface of Mg nanoparticles under 532 nm excitation in the absence of reducing agents, indicating a plasmon-driven catalytic process. Once decorated with Pd, Mg nanostructures display an enhancement factor of 103 along with an increase in the rate of catalytic coupling. The results of this study demonstrate the successful application of plasmonic Mg nanoparticles in sensing and plasmon-enhanced catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烊烊坨发布了新的文献求助10
刚刚
田様应助CHANG采纳,获得30
刚刚
CodeCraft应助Able采纳,获得10
1秒前
1秒前
1秒前
okl完成签到,获得积分10
3秒前
3秒前
3秒前
维C橙子完成签到,获得积分10
3秒前
gogogo完成签到,获得积分10
4秒前
4秒前
4秒前
房LY完成签到,获得积分10
4秒前
狂野鞋垫发布了新的文献求助10
5秒前
5秒前
5秒前
baocq发布了新的文献求助10
6秒前
QYX发布了新的文献求助10
6秒前
6秒前
Hello应助浙西南呱呱采纳,获得10
6秒前
ohh发布了新的文献求助10
7秒前
okl发布了新的文献求助10
7秒前
风不鸣枝发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
gogogo发布了新的文献求助10
8秒前
9秒前
其11完成签到,获得积分20
9秒前
哈哈发布了新的文献求助10
9秒前
彭雄武发布了新的文献求助10
9秒前
10秒前
英姑应助Mrs.yang采纳,获得10
10秒前
Rjj发布了新的文献求助10
11秒前
双珠发布了新的文献求助30
11秒前
迟大猫应助wzll采纳,获得10
12秒前
13秒前
9209完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543968
求助须知:如何正确求助?哪些是违规求助? 3121180
关于积分的说明 9345951
捐赠科研通 2819266
什么是DOI,文献DOI怎么找? 1550071
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713169