Rapid and accurate identification of Gastrodia elata Blume species based on FTIR and NIR spectroscopy combined with chemometric methods

化学 天麻 傅里叶变换红外光谱 色谱法 化学计量学 鉴定(生物学) 分析化学(期刊) 植物 化学工程 医学 替代医学 病理 中医药 工程类 生物
作者
Guangyao Li,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Talanta [Elsevier BV]
卷期号:281: 126910-126910 被引量:15
标识
DOI:10.1016/j.talanta.2024.126910
摘要

Different varieties of Gastrodia elata Blume (G. elata Bl.) have different qualities and different contents of active ingredients, such as polysaccharide and gastrodin, and it is generally believed that the higher the active ingredients, the better the quality of G. elata Bl. and the stronger the medicinal effects. Therefore, effective identification of G. elata Bl. species is crucial and has important theoretical and practical significance. In this study, first unsupervised PCA and t-SNE are established for data visualisation, follow by traditional machine learning (PLS-DA, OPLS-DA and SVM) models and deep learning (ResNet) models were established based on the fourier transform infrared (FTIR) and near infrared (NIR) spectra data of three G. elata Bl. species. The results show that PLS-DA, OPLS-DA and SVM models require complex preprocessing of spectral data to build stable and reliable models. Compared with traditional machine learning models, ResNet models do not require complex spectral preprocessing, and the training and test sets of ResNet models built based on raw NIR and low-level data fusion (FTIR + NIR) spectra reach 100 % accuracy, the external validation set based on low-level data fusion reaches 100 % accuracy, and the external validation set based on NIR has only one sample classification error and no overfitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木棉哆哆发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
浮游应助朴素的寻真采纳,获得10
2秒前
文静的如娆完成签到,获得积分10
3秒前
3秒前
科研通AI5应助青城采纳,获得30
3秒前
3秒前
ynn发布了新的文献求助50
4秒前
尚白swqd发布了新的文献求助10
5秒前
香蕉觅云应助追寻的广缘采纳,获得10
5秒前
无为发布了新的文献求助20
5秒前
6秒前
松鼠15111发布了新的文献求助30
6秒前
浮生若梦发布了新的文献求助30
6秒前
hiahiayue发布了新的文献求助10
6秒前
无奈安双完成签到,获得积分10
7秒前
Hello应助ddddd采纳,获得10
7秒前
7秒前
7秒前
ZXH完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Lxxixixi发布了新的文献求助10
8秒前
9秒前
yu完成签到,获得积分10
9秒前
小松松完成签到,获得积分10
10秒前
10秒前
lzw123456完成签到,获得积分10
10秒前
liuhang完成签到,获得积分10
10秒前
10秒前
今天也要努力呀完成签到,获得积分10
10秒前
10秒前
lalahh发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598