Accounting for Measurement Invariance Violations in Careless Responding Detection in Intensive Longitudinal Data: Exploratory vs. Partially Constrained Latent Markov Factor Analysis

测量不变性 心理学 探索性因素分析 计量经济学 计算机科学 会计 统计 人工智能 数学 验证性因素分析 结构方程建模 经济
作者
Leonie V. D. E. Vogelsmeier,Joran Jongerling,Esther Ulitzsch
标识
DOI:10.31234/osf.io/6k4g7
摘要

Intensive longitudinal data (ILD) collection methods like experience sampling methodology can place significant burdens on participants, potentially resulting in careless responding, such as random responding. Such behavior can undermine the validity of any inferences drawn from the data if not properly identified and addressed. Recently, a confirmatory mixture model (here referred to as fully constrained latent Markov factor analysis, LMFA) has been introduced as a promising solution to detect careless responding in ILD. However, this method relies on the key assumption of measurement invariance of the attentive responses, which is easily violated due to shifts in how participants interpret items. If the assumption is violated, the ability of the fully constrained LMFA to accurately identify careless responding is compromised. In this study, we evaluated two more flexible variants of LMFA—fully exploratory LMFA and partially constrained LMFA—to distinguish between careless and attentive responding, in the presence of non-invariant attentive responses. Simulation results indicated that the fully exploratory LMFA model is an effective tool for reliably detecting and interpreting different types of careless responding while accounting for violations of measurement invariance. Conversely, the partially constrained model struggled to accurately detect careless responses. We end by discussing potential reasons for this.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
略略略发布了新的文献求助10
刚刚
今后应助科研狗采纳,获得10
1秒前
轩辕山槐完成签到,获得积分10
1秒前
CodeCraft应助冬瑶采纳,获得10
2秒前
3秒前
Ustinian完成签到,获得积分10
4秒前
jzt12138发布了新的文献求助10
4秒前
飘逸宛丝完成签到,获得积分10
4秒前
李健的粉丝团团长应助HJX采纳,获得10
4秒前
LLLnna发布了新的文献求助10
5秒前
Stargazings完成签到,获得积分10
6秒前
快快快快快快快快快完成签到 ,获得积分10
6秒前
yolo完成签到,获得积分10
6秒前
y1439938345发布了新的文献求助10
7秒前
7秒前
cloud发布了新的文献求助10
8秒前
8秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
彭于晏应助科研通管家采纳,获得50
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348