SISMIK for brain MRI: Deep-learning-based motion estimation and model-based motion correction in k-space

运动(物理) 人工智能 运动估计 计算机视觉 计算机科学 空格(标点符号) k-空间 磁共振成像 医学 放射科 操作系统
作者
Oscar Dabrowski,Jean-Luc Falcone,Antoine Klauser,Julien Songeon,Michel Kocher,Bastien Chopard,François Lazeyras,Sébastien Courvoisier
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3446450
摘要

MRI, a widespread non-invasive medical imaging modality, is highly sensitive to patient motion. Despite many attempts over the years, motion correction remains a difficult problem and there is no general method applicable to all situations. We propose a retrospective method for motion estimation and correction to tackle the problem of in-plane rigid-body motion, apt for classical 2D Spin-Echo scans of the brain, which are regularly used in clinical practice. Due to the sequential acquisition of k-space, motion artifacts are well localized. The method leverages the power of deep neural networks to estimate motion parameters in k-space and uses a model-based approach to restore degraded images to avoid "hallucinations". Notable advantages are its ability to estimate motion occurring in high spatial frequencies without the need of a motion-free reference. The proposed method operates on the whole k-space dynamic range and is moderately affected by the lower SNR of higher harmonics. As a proof of concept, we provide models trained using supervised learning on 600k motion simulations based on motion-free scans of 43 different subjects. Generalization performance was tested with simulations as well as in-vivo. Qualitative and quantitative evaluations are presented for motion parameter estimations and image reconstruction. Experimental results show that our approach is able to obtain good generalization performance on simulated data and in-vivo acquisitions. We provide a Python implementation at https://gitlab.unige.ch/Oscar.Dabrowski/sismik_mri/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
aa完成签到,获得积分10
4秒前
4秒前
qin发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
落寞龙猫完成签到,获得积分10
9秒前
10秒前
宋小九完成签到,获得积分10
10秒前
赘婿应助鲤鱼寻菡采纳,获得20
11秒前
12秒前
12秒前
12秒前
李健应助风趣万声采纳,获得10
13秒前
落寞绿蕊完成签到,获得积分10
13秒前
香蕉觅云应助zhu96114748采纳,获得30
16秒前
kiki647发布了新的文献求助10
16秒前
脸就是黑啊完成签到,获得积分10
16秒前
细心蚂蚁发布了新的文献求助10
17秒前
古藤完成签到 ,获得积分10
17秒前
17秒前
桐桐应助青青采纳,获得10
20秒前
22秒前
Hello应助追寻面包采纳,获得10
22秒前
22秒前
24秒前
逆行的路人完成签到,获得积分10
25秒前
26秒前
27秒前
wang发布了新的文献求助10
28秒前
krzysku发布了新的文献求助10
28秒前
领导范儿应助清新的青寒采纳,获得10
29秒前
风趣万声发布了新的文献求助10
31秒前
31秒前
33秒前
初见完成签到 ,获得积分10
34秒前
35秒前
刘维尼发布了新的文献求助10
37秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136607
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782462
捐赠科研通 2443707
什么是DOI,文献DOI怎么找? 1299370
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954