An intelligent hybrid deep learning model for rolling bearing remaining useful life prediction

方位(导航) 自回归模型 感知器 人工智能 模式识别(心理学) 人工神经网络 计算机科学 断层(地质) 振动 支持向量机 工程类 机器学习 数学 计量经济学 地质学 物理 地震学 量子力学
作者
Linfeng Deng,Wei Li,Xinhui Yan
出处
期刊:Nondestructive Testing and Evaluation [Taylor & Francis]
卷期号:: 1-28 被引量:9
标识
DOI:10.1080/10589759.2024.2385074
摘要

Remaining Useful Life (RUL) prediction of rolling bearings is one of the intricate and important issues for equipment intelligent maintenance and health management. Various machine learning models and methods have been applied to rolling bearing RUL prediction. However, a single model cannot effectively extract state information and obtain accurate prediction results, and its generalisation is not stable under the condition of small sample data. Therefore this paper proposes an intelligent hybrid deep learning model for achieving accurate RUL prediction of rolling bearings. Firstly, the one-dimensional vibration signal is transformed into the corresponding two-dimensional time-frequency diagram via Continuous Wavelet Transform (CWT). Secondly, the diagram is input into a Multilayer Perceptron (MLP) consisting of a basic three-layer feed-forward network to obtain a one-dimensional feature vector. And lastly, the obtained feature vector is input into an integrated model based on Deep Autoregressive and Transformer to produce the probability distribution and obtain the prediction results of rolling bearing RUL. Extensive experiments on two rolling bearing datasets show that the proposed model outperforms six other comparative models in extracting bearing fault features and predicting bearing RUL, which demonstrates that the proposed model can effectively extract bearing fault features and accurately predict bearing remaining useful life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王小迪完成签到,获得积分10
1秒前
fengha完成签到,获得积分10
1秒前
卿卿完成签到,获得积分10
1秒前
changmengying完成签到,获得积分10
1秒前
虚幻幼荷完成签到,获得积分10
1秒前
橘寄完成签到,获得积分10
2秒前
俄歇电子完成签到,获得积分10
2秒前
左右完成签到 ,获得积分10
3秒前
3秒前
无奈的博超完成签到,获得积分10
4秒前
景代丝发布了新的文献求助10
4秒前
hongyan完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
柚子完成签到 ,获得积分10
5秒前
orixero应助HEANZ采纳,获得10
6秒前
今后应助花开不败采纳,获得10
7秒前
桐桐应助果实采纳,获得10
7秒前
zhangyu完成签到,获得积分10
7秒前
hongyan发布了新的文献求助10
7秒前
缥缈的背包完成签到,获得积分10
7秒前
丘比特应助威武鸽子采纳,获得10
8秒前
8秒前
Alicia完成签到,获得积分10
8秒前
kk完成签到,获得积分10
8秒前
俭朴的白开水完成签到,获得积分10
9秒前
娇气的笑蓝完成签到,获得积分10
10秒前
缓慢乌冬面完成签到,获得积分10
10秒前
wuhao发布了新的文献求助10
10秒前
冰冰宝发布了新的文献求助10
10秒前
www发布了新的文献求助10
10秒前
暴躁的黎云完成签到,获得积分10
11秒前
11秒前
跳跃飞薇完成签到 ,获得积分10
11秒前
11秒前
11秒前
凌雪柯完成签到,获得积分10
12秒前
mayi完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960387
求助须知:如何正确求助?哪些是违规求助? 3506503
关于积分的说明 11130906
捐赠科研通 3238717
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871982
科研通“疑难数据库(出版商)”最低求助积分说明 803118