已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a COVID-19 vaccination prediction model based on self-reporting results in Chinese older adults from September 2022 to November 2022: A nationwide cross-sectional study

逻辑回归 接收机工作特性 医学 横断面研究 置信区间 统计 2019年冠状病毒病(COVID-19) 校准 回归分析 曲线下面积 预测建模 交叉验证 人口学 内科学 数学 疾病 传染病(医学专业) 社会学
作者
Dong Liu,Yushi Zhang,Rui Liang,Jieping Lei,Ke Huang,Yaoda Hu,Liwen Fang,Luzhao Feng,Guangliang Shan,Min Wang,Yuanyuan Ding,Qian Gao,Ting Yang
出处
期刊:Human Vaccines & Immunotherapeutics [Taylor & Francis]
卷期号:20 (1) 被引量:1
标识
DOI:10.1080/21645515.2024.2382502
摘要

It was common to see that older adults were reluctant to be vaccinated for coronavirus disease 2019 (COVID-19) in China. There is a lack of practical prediction models to guide COVID-19 vaccination program. A nationwide, self-reported, cross-sectional survey was conducted from September 2022 to November 2022, including people aged 60 years or older. Stratified random sampling was used to divide the dataset into derivation, validation, and test datasets at a ratio of 6:2:2. Least absolute shrinkage and selection operator and multivariable logistic regression were used for variable screening and model construction. Discrimination and calibration were assessed primarily by area under the receiver operating characteristic curve (AUC) and calibration curve. A total of 35057 samples (53.65% males and mean age of 69.64 ± 7.24 years) were finally selected, which constitutes 93.73% of the valid samples. From 33 potential predictors, 19 variables were screened and included in the multivariable logistic regression model. The mean AUC in the validation dataset was 0.802, with sensitivity, specificity, and accuracy of 0.732, 0.718 and 0.729 respectively, which were similar to the parameters in the test dataset of 0.755, 0.715 and 0.720, respectively, and the mean AUC in the test dataset was 0.815. There were no significant differences between the model predicted values and the actual observed values for calibration in these groups. The prediction model based on self-reported characteristics of older adults was developed that could be useful for predicting the willingness for COVID-19 vaccines, as well as providing recommendations in improving vaccine acceptance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
3秒前
3秒前
feng完成签到,获得积分20
4秒前
llk发布了新的文献求助10
8秒前
小蘑菇应助学术蝗虫采纳,获得10
10秒前
Grayball应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
orixero应助科研通管家采纳,获得10
13秒前
Grayball应助科研通管家采纳,获得10
13秒前
JamesPei应助踏实书文采纳,获得50
14秒前
量子星尘发布了新的文献求助10
15秒前
伯爵完成签到 ,获得积分10
15秒前
清秀紫南完成签到 ,获得积分10
16秒前
kyt发布了新的文献求助10
16秒前
土豪的摩托完成签到 ,获得积分10
17秒前
19秒前
胡萝卜须应助nickchenzzz采纳,获得10
19秒前
19秒前
cao完成签到 ,获得积分10
20秒前
陈一完成签到,获得积分10
22秒前
Lucas应助feng采纳,获得10
22秒前
23秒前
学术蝗虫发布了新的文献求助10
23秒前
CATH完成签到 ,获得积分10
23秒前
111发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
26秒前
lin完成签到,获得积分10
27秒前
lurun完成签到,获得积分10
27秒前
28秒前
xx完成签到 ,获得积分10
30秒前
笑点低千愁完成签到,获得积分20
30秒前
醉生梦死完成签到 ,获得积分10
30秒前
Milton_z完成签到 ,获得积分10
32秒前
脑洞疼应助null采纳,获得10
32秒前
32秒前
33秒前
唯梦完成签到 ,获得积分10
34秒前
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666285
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762628
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185