Optimizing Recurrent Neural Networks: A Study on Gradient Normalization of Weights for Enhanced Training Efficiency

规范化(社会学) 梯度下降 超参数 计算机科学 循环神经网络 困惑 人工智能 人工神经网络 梯度法 随机梯度下降算法 机器学习 算法 语言模型 社会学 人类学
作者
Xinyi Wu,Bingjie Xiang,Huaizheng Lu,Chaopeng Li,Xingwang Huang,Weifang Huang
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (15): 6578-6578 被引量:2
标识
DOI:10.3390/app14156578
摘要

Recurrent Neural Networks (RNNs) are classical models for processing sequential data, demonstrating excellent performance in tasks such as natural language processing and time series prediction. However, during the training of RNNs, the issues of vanishing and exploding gradients often arise, significantly impacting the model’s performance and efficiency. In this paper, we investigate why RNNs are more prone to gradient problems compared to other common sequential networks. To address this issue and enhance network performance, we propose a method for gradient normalization of network weights. This method suppresses the occurrence of gradient problems by altering the statistical properties of RNN weights, thereby improving training effectiveness. Additionally, we analyze the impact of weight gradient normalization on the probability-distribution characteristics of model weights and validate the sensitivity of this method to hyperparameters such as learning rate. The experimental results demonstrate that gradient normalization enhances the stability of model training and reduces the frequency of gradient issues. On the Penn Treebank dataset, this method achieves a perplexity level of 110.89, representing an 11.48% improvement over conventional gradient descent methods. For prediction lengths of 24 and 96 on the ETTm1 dataset, Mean Absolute Error (MAE) values of 0.778 and 0.592 are attained, respectively, resulting in 3.00% and 6.77% improvement over conventional gradient descent methods. Moreover, selected subsets of the UCR dataset show an increase in accuracy ranging from 0.4% to 6.0%. The gradient normalization method enhances the ability of RNNs to learn from sequential and causal data, thereby holding significant implications for optimizing the training effectiveness of RNN-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助zhw采纳,获得10
1秒前
1秒前
1秒前
decademe完成签到,获得积分10
1秒前
2秒前
2秒前
wnll发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
方语蕊完成签到 ,获得积分10
4秒前
嗡嗡完成签到,获得积分10
4秒前
5秒前
5秒前
包包发布了新的文献求助10
5秒前
Lemon发布了新的文献求助10
6秒前
是赤赤呀完成签到,获得积分10
6秒前
上好佳完成签到,获得积分10
6秒前
GongSyi完成签到 ,获得积分10
7秒前
黑犬发布了新的文献求助10
7秒前
Sunmmon完成签到,获得积分10
7秒前
所所应助lqy采纳,获得10
8秒前
到家了发布了新的文献求助10
8秒前
zhangjx完成签到 ,获得积分20
8秒前
LYegoist完成签到,获得积分10
9秒前
9秒前
李文龙发布了新的文献求助10
9秒前
yuxin完成签到,获得积分10
9秒前
情怀应助NN采纳,获得10
9秒前
研友_7ZebY8完成签到,获得积分10
9秒前
你好谢谢你完成签到,获得积分20
9秒前
1236应助红叶采纳,获得20
9秒前
panda完成签到,获得积分10
9秒前
10秒前
11秒前
Sunmmon发布了新的文献求助10
11秒前
1111完成签到,获得积分10
12秒前
高透明完成签到 ,获得积分10
12秒前
大聪明关注了科研通微信公众号
12秒前
13秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Elastic local buckling behaviour of corroded cold-formed steel columns 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180500
求助须知:如何正确求助?哪些是违规求助? 2830796
关于积分的说明 7981033
捐赠科研通 2492477
什么是DOI,文献DOI怎么找? 1329555
科研通“疑难数据库(出版商)”最低求助积分说明 635745
版权声明 602954