亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing Recurrent Neural Networks: A Study on Gradient Normalization of Weights for Enhanced Training Efficiency

规范化(社会学) 梯度下降 超参数 计算机科学 循环神经网络 困惑 人工智能 人工神经网络 梯度法 随机梯度下降算法 机器学习 算法 语言模型 社会学 人类学
作者
Xinyi Wu,Bingjie Xiang,Huaizheng Lu,Chaopeng Li,Xingwang Huang,Weifang Huang
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (15): 6578-6578 被引量:2
标识
DOI:10.3390/app14156578
摘要

Recurrent Neural Networks (RNNs) are classical models for processing sequential data, demonstrating excellent performance in tasks such as natural language processing and time series prediction. However, during the training of RNNs, the issues of vanishing and exploding gradients often arise, significantly impacting the model’s performance and efficiency. In this paper, we investigate why RNNs are more prone to gradient problems compared to other common sequential networks. To address this issue and enhance network performance, we propose a method for gradient normalization of network weights. This method suppresses the occurrence of gradient problems by altering the statistical properties of RNN weights, thereby improving training effectiveness. Additionally, we analyze the impact of weight gradient normalization on the probability-distribution characteristics of model weights and validate the sensitivity of this method to hyperparameters such as learning rate. The experimental results demonstrate that gradient normalization enhances the stability of model training and reduces the frequency of gradient issues. On the Penn Treebank dataset, this method achieves a perplexity level of 110.89, representing an 11.48% improvement over conventional gradient descent methods. For prediction lengths of 24 and 96 on the ETTm1 dataset, Mean Absolute Error (MAE) values of 0.778 and 0.592 are attained, respectively, resulting in 3.00% and 6.77% improvement over conventional gradient descent methods. Moreover, selected subsets of the UCR dataset show an increase in accuracy ranging from 0.4% to 6.0%. The gradient normalization method enhances the ability of RNNs to learn from sequential and causal data, thereby holding significant implications for optimizing the training effectiveness of RNN-based models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fossick2010完成签到 ,获得积分10
10秒前
Penny完成签到,获得积分10
29秒前
33秒前
Penny发布了新的文献求助10
34秒前
andrele发布了新的文献求助50
38秒前
Fortune发布了新的文献求助10
38秒前
颜安完成签到,获得积分20
51秒前
张张完成签到 ,获得积分10
53秒前
56秒前
Fortune完成签到,获得积分10
1分钟前
Vincent发布了新的文献求助10
1分钟前
爆米花应助lzmcsp采纳,获得10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
Vincent完成签到,获得积分10
1分钟前
蓝色牛马完成签到,获得积分10
1分钟前
xuzb发布了新的文献求助10
1分钟前
搜集达人应助蓝色牛马采纳,获得10
1分钟前
1分钟前
lzmcsp发布了新的文献求助10
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
lzmcsp完成签到,获得积分10
1分钟前
andrele发布了新的文献求助200
2分钟前
2分钟前
颜安发布了新的文献求助10
2分钟前
蓝色牛马发布了新的文献求助10
2分钟前
坦率的诗蕾完成签到 ,获得积分10
2分钟前
_ban完成签到 ,获得积分10
2分钟前
HYQ完成签到 ,获得积分10
2分钟前
在水一方应助Fiy采纳,获得10
2分钟前
3分钟前
3分钟前
Fiy发布了新的文献求助10
3分钟前
wmz完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507