作者
Zhemin Li,Xiufang Bi,Xinyao Xie,Dan Shu,Di Luo,Jie Yang,Hong Tan
摘要
Iturin A (IA) encapsulated in chitosan (CS) microcapsules (IA/CS) underwent thorough physicochemical characterization using thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). SEM confirmed the smooth, spherical morphology of the IA/CS microcapsules, while FTIR revealed complex intermolecular interactions between IA and CS. TGA demonstrated thermal stability within the 0-100 °C range, while particle size analysis revealed an average diameter of 553.4 nm. To evaluate IA/CS efficacy in post-harvest grape preservation, grapes were treated with sterile water (CK), 10 g/L CS, 0.1 g/L IA/CS, and 0.1 g/L chitosan empty microcapsules (CKM), then stored at 25 °C for 16 days. IA/CS significantly reduced decay and respiration intensity by 52.3 % and 23.8 %, respectively, compared to CK. IA/CS treatment also inhibited abscission rate, weight loss, firmness reduction, total soluble solids consumption, titratable acidity consumption, polyphenol oxidase, and peroxidase activities on par with CS treatment (p > 0.05), but performed better than CK (reductions of 26.9 %, 41.2 %, 25.8 %, 27.2 %, 24.2 %, 19.4 %, and 17.4 %, respectively) and CKM (p < 0.05). Sensory evaluation confirmed that IA/CS effectively suppressed decay, slowed post-harvest metabolic activity, and maintained grape quality. Therefore, IA/CS microcapsules offer a promising method for extending grape shelf life and preserving quality.