In-Situ Construction of Atomic-Level Fe–O Bond Bridges within Fe2N/g-C3N4 Heterojunction for Efficient Visible-Light-Driven Photocatalytic H2 Production

光催化 异质结 可见光谱 原位 材料科学 化学 催化作用 光化学 原子物理学 无机化学 物理 光电子学 有机化学
作者
Qian Zheng,Jiajun Fu,Guanyu Wu,Xunhuai Huang,Jiafeng Fan,Baoting Tan,Zhilong Song,Yanhua Song,Jia Yan
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.4c02777
摘要

The limited active sites and faster photogenerated electron–hole pair recombination rate of g-C3N4 restrict its application in photocatalytic H2 production. Constructing heterojunctions has been shown to improve the spatial (directional) separation of photogenerated electrons and holes. However, due to interface mismatch in traditional heterojunction structures and a lack of precise electron transport channels, the photocatalytic efficiency is limited. Here, we developed a two-step calcination approach to create an Fe2N/g-C3N4 heterojunction linked by Fe–O bonds (named as Fe-OCN). The newly formed Fe–O bonds within the heterojunction can act as atomic-level interface electron transfer channels, directly transferring the photogenerated electrons of g-C3N4 to the reactive center Fe2N, significantly improving the charge transfer rate and utilization, thus promoting visible-light-driven photocatalytic H2 production. The optimal Fe-OCN achieved a H2 production rate of 5986.29 μmol g–1 h–1 under visible light, 13.44 times higher than that of the OCN due to efficient charge separation and transfer capabilities. This work provides a constructive reference for the design and synthesis of organic–inorganic heterojunction with chemically bonded interfaces, establishing quick electron transfer channels, and achieving targeted electron transfer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Stitch完成签到 ,获得积分10
1秒前
1秒前
眯眯眼的冷珍完成签到,获得积分10
1秒前
bjyx完成签到,获得积分10
1秒前
reck完成签到,获得积分10
2秒前
pharmstudent发布了新的文献求助30
2秒前
小田完成签到,获得积分10
2秒前
小喵发布了新的文献求助10
3秒前
FashionBoy应助毛毛哦啊采纳,获得10
3秒前
Lucas应助Chen采纳,获得10
4秒前
强健的蚂蚁完成签到,获得积分20
4秒前
小宇发布了新的文献求助10
4秒前
斜杠武完成签到,获得积分20
4秒前
5秒前
伞兵龙发布了新的文献求助10
5秒前
RC_Wang应助科研小民工采纳,获得10
5秒前
sanben完成签到,获得积分10
5秒前
5秒前
_蝴蝶小姐完成签到,获得积分10
6秒前
诗轩发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
迟大猫应助乐乱采纳,获得10
8秒前
万能图书馆应助派大星采纳,获得10
9秒前
FashionBoy应助娜行采纳,获得10
10秒前
10秒前
传奇3应助后知后觉采纳,获得10
11秒前
11秒前
11秒前
科研通AI2S应助Chem is try采纳,获得10
11秒前
12秒前
a方舟发布了新的文献求助10
12秒前
寒冷书竹发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672