已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Global Sensitivity Analysis via Optimal Transport

灵敏度(控制系统) 计算机科学 工程类 电子工程
作者
Emanuele Borgonovo,Alessio Figalli,Elmar Plischke,Giuseppe Savaré
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:7
标识
DOI:10.1287/mnsc.2023.01796
摘要

We examine the construction of variable importance measures for multivariate responses using the theory of optimal transport. We start with the classical optimal transport formulation. We show that the resulting sensitivity indices are well-defined under input dependence, are equal to zero under statistical independence, and are maximal under fully functional dependence. Also, they satisfy a continuity property for information refinements. We show that the new indices encompass Wagner’s variance-based sensitivity measures. Moreover, they provide deeper insights into the effect of an input’s uncertainty, quantifying its impact on the output mean, variance, and higher-order moments. We then consider the entropic formulation of the optimal transport problem and show that the resulting global sensitivity measures satisfy the same properties, with the exception that, under statistical independence, they are minimal, but not necessarily equal to zero. We prove the consistency of a given-data estimation strategy and test the feasibility of algorithmic implementations based on alternative optimal transport solvers. Application to the assemble-to-order simulator reveals a significant difference in the key drivers of uncertainty between the case in which the quantity of interest is profit (univariate) or inventory (multivariate). The new importance measures contribute to meeting the increasing demand for methods that make black-box models more transparent to analysts and decision makers. This paper was accepted by Baris Ata, stochastic models and simulation. Funding: A. Figalli acknowledges the support of the ERC [Grant 721675] “Regularity and Stability in Partial Differential Equations (RSPDE)” and of the Lagrange Mathematics and Computation Research Center. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01796 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁真人发布了新的文献求助10
刚刚
酷波er应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
ccm应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
ccm应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
万能图书馆应助lqm采纳,获得10
2秒前
xjf完成签到,获得积分10
2秒前
2秒前
zhang发布了新的文献求助10
3秒前
大模型应助内向万天采纳,获得10
4秒前
黑豆子发布了新的文献求助10
5秒前
大模型应助猪猪hero采纳,获得10
6秒前
完美世界应助haha采纳,获得10
6秒前
7秒前
清秀寇完成签到,获得积分10
7秒前
fcc完成签到,获得积分10
9秒前
10秒前
11秒前
zgn完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
ran发布了新的文献求助10
14秒前
15秒前
16秒前
lanxinyue发布了新的文献求助10
16秒前
咩咩羊发布了新的文献求助10
16秒前
大个应助王jj采纳,获得10
16秒前
17秒前
17秒前
DandanHan0916发布了新的文献求助10
17秒前
领导范儿应助instill采纳,获得10
17秒前
周苗完成签到 ,获得积分20
17秒前
lqm发布了新的文献求助10
18秒前
猪猪hero发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644082
求助须知:如何正确求助?哪些是违规求助? 4762848
关于积分的说明 15023478
捐赠科研通 4802306
什么是DOI,文献DOI怎么找? 2567408
邀请新用户注册赠送积分活动 1525124
关于科研通互助平台的介绍 1484620