Global Sensitivity Analysis via Optimal Transport

灵敏度(控制系统) 计算机科学 工程类 电子工程
作者
Emanuele Borgonovo,Alessio Figalli,Elmar Plischke,Giuseppe Savaré
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:7
标识
DOI:10.1287/mnsc.2023.01796
摘要

We examine the construction of variable importance measures for multivariate responses using the theory of optimal transport. We start with the classical optimal transport formulation. We show that the resulting sensitivity indices are well-defined under input dependence, are equal to zero under statistical independence, and are maximal under fully functional dependence. Also, they satisfy a continuity property for information refinements. We show that the new indices encompass Wagner’s variance-based sensitivity measures. Moreover, they provide deeper insights into the effect of an input’s uncertainty, quantifying its impact on the output mean, variance, and higher-order moments. We then consider the entropic formulation of the optimal transport problem and show that the resulting global sensitivity measures satisfy the same properties, with the exception that, under statistical independence, they are minimal, but not necessarily equal to zero. We prove the consistency of a given-data estimation strategy and test the feasibility of algorithmic implementations based on alternative optimal transport solvers. Application to the assemble-to-order simulator reveals a significant difference in the key drivers of uncertainty between the case in which the quantity of interest is profit (univariate) or inventory (multivariate). The new importance measures contribute to meeting the increasing demand for methods that make black-box models more transparent to analysts and decision makers. This paper was accepted by Baris Ata, stochastic models and simulation. Funding: A. Figalli acknowledges the support of the ERC [Grant 721675] “Regularity and Stability in Partial Differential Equations (RSPDE)” and of the Lagrange Mathematics and Computation Research Center. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01796 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mingda完成签到,获得积分10
刚刚
随机昵称完成签到,获得积分10
1秒前
能干雁凡发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助满意的颦采纳,获得10
3秒前
3秒前
3秒前
乌梅丸完成签到,获得积分10
3秒前
明理楷瑞发布了新的文献求助10
4秒前
Jasper应助中华田园博采纳,获得10
4秒前
慕青应助Pan采纳,获得10
4秒前
lsy发布了新的文献求助30
5秒前
充电宝应助舒远采纳,获得10
5秒前
乐乐乐乐乐完成签到,获得积分10
5秒前
慕青应助xyx采纳,获得10
5秒前
打小就帅完成签到,获得积分10
6秒前
想摆摊卖烤鱿鱼完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
香蕉觅云应助CC采纳,获得10
7秒前
7秒前
chengxiping完成签到,获得积分10
7秒前
7秒前
perfect完成签到,获得积分10
8秒前
lilili发布了新的文献求助10
9秒前
大个应助丰知然采纳,获得20
10秒前
10秒前
10秒前
姚佳麒完成签到,获得积分10
10秒前
xiaomiao完成签到,获得积分20
10秒前
10秒前
Elanie完成签到,获得积分10
11秒前
贪玩的秋柔应助歪歪歪采纳,获得10
11秒前
12秒前
12秒前
孤巷的猫完成签到,获得积分10
12秒前
狼谷同学发布了新的文献求助10
12秒前
12秒前
852应助舒心新儿采纳,获得10
12秒前
bkagyin应助PPPhua采纳,获得10
13秒前
在水一方应助沐沐采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578243
求助须知:如何正确求助?哪些是违规求助? 4663137
关于积分的说明 14744830
捐赠科研通 4603883
什么是DOI,文献DOI怎么找? 2526739
邀请新用户注册赠送积分活动 1496343
关于科研通互助平台的介绍 1465712