已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance of ChatGPT on Nursing Licensure Examinations in the United States and China: Cross-Sectional Study

执照 中国 医学教育 医学 心理学 政治学 法学
作者
Zelin Wu,Wenyi Gan,Zhaowen Xue,Zhengxin Ni,Xiaofei Zheng,Yiyi Zhang
出处
期刊:JMIR medical education [JMIR Publications Inc.]
卷期号:10: e52746-e52746
标识
DOI:10.2196/52746
摘要

Abstract Background The creation of large language models (LLMs) such as ChatGPT is an important step in the development of artificial intelligence, which shows great potential in medical education due to its powerful language understanding and generative capabilities. The purpose of this study was to quantitatively evaluate and comprehensively analyze ChatGPT’s performance in handling questions for the National Nursing Licensure Examination (NNLE) in China and the United States, including the National Council Licensure Examination for Registered Nurses (NCLEX-RN) and the NNLE. Objective This study aims to examine how well LLMs respond to the NCLEX-RN and the NNLE multiple-choice questions (MCQs) in various language inputs. To evaluate whether LLMs can be used as multilingual learning assistance for nursing, and to assess whether they possess a repository of professional knowledge applicable to clinical nursing practice. Methods First, we compiled 150 NCLEX-RN Practical MCQs, 240 NNLE Theoretical MCQs, and 240 NNLE Practical MCQs. Then, the translation function of ChatGPT 3.5 was used to translate NCLEX-RN questions from English to Chinese and NNLE questions from Chinese to English. Finally, the original version and the translated version of the MCQs were inputted into ChatGPT 4.0, ChatGPT 3.5, and Google Bard. Different LLMs were compared according to the accuracy rate, and the differences between different language inputs were compared. Results The accuracy rates of ChatGPT 4.0 for NCLEX-RN practical questions and Chinese-translated NCLEX-RN practical questions were 88.7% (133/150) and 79.3% (119/150), respectively. Despite the statistical significance of the difference ( P =.03), the correct rate was generally satisfactory. Around 71.9% (169/235) of NNLE Theoretical MCQs and 69.1% (161/233) of NNLE Practical MCQs were correctly answered by ChatGPT 4.0. The accuracy of ChatGPT 4.0 in processing NNLE Theoretical MCQs and NNLE Practical MCQs translated into English was 71.5% (168/235; P =.92) and 67.8% (158/233; P =.77), respectively, and there was no statistically significant difference between the results of text input in different languages. ChatGPT 3.5 (NCLEX-RN P =.003, NNLE Theoretical P <.001, NNLE Practical P =.12) and Google Bard (NCLEX-RN P <.001, NNLE Theoretical P <.001, NNLE Practical P <.001) had lower accuracy rates for nursing-related MCQs than ChatGPT 4.0 in English input. English accuracy was higher when compared with ChatGPT 3.5’s Chinese input, and the difference was statistically significant (NCLEX-RN P =.02, NNLE Practical P =.02). Whether submitted in Chinese or English, the MCQs from the NCLEX-RN and NNLE demonstrated that ChatGPT 4.0 had the highest number of unique correct responses and the lowest number of unique incorrect responses among the 3 LLMs. Conclusions This study, focusing on 618 nursing MCQs including NCLEX-RN and NNLE exams, found that ChatGPT 4.0 outperformed ChatGPT 3.5 and Google Bard in accuracy. It excelled in processing English and Chinese inputs, underscoring its potential as a valuable tool in nursing education and clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biancaliu发布了新的文献求助20
3秒前
6秒前
yyr完成签到 ,获得积分10
6秒前
aiiLuX完成签到 ,获得积分10
12秒前
HarryYang完成签到 ,获得积分10
14秒前
dhhaoyihong发布了新的文献求助50
15秒前
吱吱草莓派完成签到 ,获得积分10
15秒前
一朵会长树的花完成签到,获得积分10
17秒前
Lucas应助柿柿石榴籽采纳,获得10
18秒前
小美酱完成签到 ,获得积分0
18秒前
22秒前
huazhangchina完成签到 ,获得积分10
27秒前
bwbw完成签到 ,获得积分10
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
29秒前
搜集达人应助科研通管家采纳,获得10
29秒前
hannuannuan发布了新的文献求助10
30秒前
丰盛的煎饼应助supersky采纳,获得10
31秒前
情怀应助原野小年采纳,获得10
32秒前
33秒前
biancaliu完成签到,获得积分10
33秒前
木子完成签到,获得积分20
33秒前
34秒前
ycp完成签到,获得积分10
38秒前
38秒前
劉平果完成签到 ,获得积分10
39秒前
木子发布了新的文献求助10
40秒前
40秒前
郑思榆完成签到 ,获得积分10
40秒前
原野小年发布了新的文献求助10
43秒前
lbl发布了新的文献求助10
45秒前
dhhaoyihong完成签到,获得积分10
47秒前
49秒前
glq发布了新的文献求助10
51秒前
shime完成签到,获得积分10
53秒前
55秒前
55秒前
ZFW完成签到 ,获得积分10
56秒前
笨笨的荧荧完成签到 ,获得积分10
56秒前
Tian关注了科研通微信公众号
56秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150464
求助须知:如何正确求助?哪些是违规求助? 2801801
关于积分的说明 7845765
捐赠科研通 2459167
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727