已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SEN-CTD: semantic enhancement network with content-title discrepancy for fake news detection

CTD公司 计算机科学 情报检索 万维网 海洋学 地质学
作者
Jiaqi Fang,Kun Ma,Yunhai Qiu,Ke Ji,Zhenxiang Chen,Bo Yang
出处
期刊:International Journal of Web Information Systems [Emerald Publishing Limited]
标识
DOI:10.1108/ijwis-04-2024-0116
摘要

Purpose The discrepancy between the content of an article and its title is a key characteristic of fake news. Current methods for detecting fake news often ignore the significant difference in length between the content and its title. In addition, relying solely on textual discrepancies between the title and content to distinguish between real and fake news has proven ineffective. The purpose of this paper is to develop a new approach called semantic enhancement network with content–title discrepancy (SEN–CTD), which enhances the accuracy of fake news detection. Design/methodology/approach The SEN–CTD framework is composed of two primary modules: the SEN and the content–title comparison network (CTCN). The SEN is designed to enrich the representation of news titles by integrating external information and position information to capture the context. Meanwhile, the CTCN focuses on assessing the consistency between the content of news articles and their corresponding titles examining both emotional tones and semantic attributes. Findings The SEN–CTD model performs well on the GossipCop, PolitiFact and RealNews data sets, achieving accuracies of 80.28%, 86.88% and 84.96%, respectively. These results highlight its effectiveness in accurately detecting fake news across different types of content. Originality/value The SEN is specifically designed to improve the representation of extremely short texts, enhancing the depth and accuracy of analyses for brief content. The CTCN is tailored to examine the consistency between news titles and their corresponding content, ensuring a thorough comparative evaluation of both emotional and semantic discrepancies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
小张想发刊完成签到 ,获得积分10
7秒前
有人应助momo102610采纳,获得10
9秒前
66发布了新的文献求助10
10秒前
10秒前
无情凡英完成签到 ,获得积分10
11秒前
XIAOJU_U完成签到 ,获得积分10
12秒前
Yesyes应助siyuyu采纳,获得10
13秒前
15秒前
乐乐应助66采纳,获得10
15秒前
18秒前
20秒前
20秒前
dustwling完成签到 ,获得积分10
21秒前
677发布了新的文献求助10
25秒前
解语花发布了新的文献求助30
26秒前
27秒前
狂野的冰棍完成签到,获得积分10
28秒前
wyy发布了新的文献求助10
32秒前
爱听歌的孤容完成签到 ,获得积分10
36秒前
轻松思枫发布了新的文献求助10
37秒前
37秒前
隐形曼青应助wyy采纳,获得10
38秒前
棠真完成签到 ,获得积分0
40秒前
逆时针发布了新的文献求助10
42秒前
42秒前
小马甲应助677采纳,获得10
43秒前
46秒前
jasonjiang完成签到 ,获得积分0
46秒前
47秒前
雪白的听寒完成签到 ,获得积分10
48秒前
虚幻初之发布了新的文献求助10
48秒前
49秒前
桃子呐发布了新的文献求助10
51秒前
zhaoyang完成签到 ,获得积分10
53秒前
泽灵发布了新的文献求助10
55秒前
小蘑菇应助逆时针采纳,获得10
55秒前
量子星尘发布了新的文献求助10
59秒前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959928
求助须知:如何正确求助?哪些是违规求助? 3506172
关于积分的说明 11128138
捐赠科研通 3238123
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024