SEN-CTD: semantic enhancement network with content-title discrepancy for fake news detection

CTD公司 计算机科学 情报检索 万维网 海洋学 地质学
作者
Jiaqi Fang,Kun Ma,Yunhai Qiu,Ke Ji,Zhenxiang Chen,Bo Yang
出处
期刊:International Journal of Web Information Systems [Emerald (MCB UP)]
标识
DOI:10.1108/ijwis-04-2024-0116
摘要

Purpose The discrepancy between the content of an article and its title is a key characteristic of fake news. Current methods for detecting fake news often ignore the significant difference in length between the content and its title. In addition, relying solely on textual discrepancies between the title and content to distinguish between real and fake news has proven ineffective. The purpose of this paper is to develop a new approach called semantic enhancement network with content–title discrepancy (SEN–CTD), which enhances the accuracy of fake news detection. Design/methodology/approach The SEN–CTD framework is composed of two primary modules: the SEN and the content–title comparison network (CTCN). The SEN is designed to enrich the representation of news titles by integrating external information and position information to capture the context. Meanwhile, the CTCN focuses on assessing the consistency between the content of news articles and their corresponding titles examining both emotional tones and semantic attributes. Findings The SEN–CTD model performs well on the GossipCop, PolitiFact and RealNews data sets, achieving accuracies of 80.28%, 86.88% and 84.96%, respectively. These results highlight its effectiveness in accurately detecting fake news across different types of content. Originality/value The SEN is specifically designed to improve the representation of extremely short texts, enhancing the depth and accuracy of analyses for brief content. The CTCN is tailored to examine the consistency between news titles and their corresponding content, ensuring a thorough comparative evaluation of both emotional and semantic discrepancies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guo发布了新的文献求助10
刚刚
热心枕头发布了新的文献求助10
刚刚
Espionage完成签到,获得积分10
1秒前
may发布了新的文献求助30
1秒前
Jasper应助标致的从寒采纳,获得10
1秒前
1秒前
2秒前
无敌小汐完成签到,获得积分10
2秒前
上官若男应助西瓜汁采纳,获得10
3秒前
jason367发布了新的文献求助10
3秒前
昵称完成签到,获得积分10
3秒前
在水一方应助huhu采纳,获得10
4秒前
4秒前
领导范儿应助altman88采纳,获得10
5秒前
5秒前
nightmare发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
踏实访琴完成签到 ,获得积分10
6秒前
充电宝应助小鲤鱼采纳,获得10
6秒前
Oblivion发布了新的文献求助10
6秒前
李健的小迷弟应助藤大阳采纳,获得10
7秒前
子非鱼发布了新的文献求助10
7秒前
朴实山兰发布了新的文献求助20
8秒前
瘦瘦发布了新的文献求助10
8秒前
nenoaowu应助动听的泥猴桃采纳,获得10
9秒前
10秒前
慕青应助封典采纳,获得10
11秒前
11秒前
靳冉发布了新的文献求助10
12秒前
槿忆萱影完成签到,获得积分10
12秒前
mubiguo完成签到,获得积分20
12秒前
13秒前
Victor完成签到,获得积分10
13秒前
直率路灯完成签到,获得积分10
14秒前
烂漫的乘云完成签到,获得积分20
14秒前
柒柒发布了新的文献求助30
15秒前
hua发布了新的文献求助10
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309260
求助须知:如何正确求助?哪些是违规求助? 2942635
关于积分的说明 8510003
捐赠科研通 2617762
什么是DOI,文献DOI怎么找? 1430366
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649274