CTD公司
计算机科学
情报检索
万维网
海洋学
地质学
作者
Jiaqi Fang,Kun Ma,Yunhai Qiu,Ke Ji,Zhenxiang Chen,Bo Yang
出处
期刊:International Journal of Web Information Systems
[Emerald (MCB UP)]
日期:2024-11-01
标识
DOI:10.1108/ijwis-04-2024-0116
摘要
Purpose The discrepancy between the content of an article and its title is a key characteristic of fake news. Current methods for detecting fake news often ignore the significant difference in length between the content and its title. In addition, relying solely on textual discrepancies between the title and content to distinguish between real and fake news has proven ineffective. The purpose of this paper is to develop a new approach called semantic enhancement network with content–title discrepancy (SEN–CTD), which enhances the accuracy of fake news detection. Design/methodology/approach The SEN–CTD framework is composed of two primary modules: the SEN and the content–title comparison network (CTCN). The SEN is designed to enrich the representation of news titles by integrating external information and position information to capture the context. Meanwhile, the CTCN focuses on assessing the consistency between the content of news articles and their corresponding titles examining both emotional tones and semantic attributes. Findings The SEN–CTD model performs well on the GossipCop, PolitiFact and RealNews data sets, achieving accuracies of 80.28%, 86.88% and 84.96%, respectively. These results highlight its effectiveness in accurately detecting fake news across different types of content. Originality/value The SEN is specifically designed to improve the representation of extremely short texts, enhancing the depth and accuracy of analyses for brief content. The CTCN is tailored to examine the consistency between news titles and their corresponding content, ensuring a thorough comparative evaluation of both emotional and semantic discrepancies.
科研通智能强力驱动
Strongly Powered by AbleSci AI