Self-supervised subaction Parsing Network for Semi-supervised Action Quality Assessment

解析 计算机科学 人工智能 质量(理念) 自然语言处理 动作(物理) 机器学习 模式识别(心理学) 量子力学 认识论 物理 哲学
作者
Kumie Gedamu,Yanli Ji,Yang Yang,Jie Shao,Heng Tao Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3468870
摘要

Semi-supervised Action Quality Assessment (AQA) using limited labeled and massive unlabeled samples to achieve high-quality assessment is an attractive but challenging task. The main challenge relies on how to exploit solid and consistent representations of action sequences for building a bridge between labeled and unlabeled samples in the semi-supervised AQA. To address the issue, we propose a Self-supervised subAction Parsing Network (SAP-Net) that employs a teacher-student network structure to learn consistent semantic representations between labeled and unlabeled samples for semi-supervised AQA. We perform actor-centric region detection, generating high-quality pseudo-labels in the teacher branch, which assists the student branch in learning discriminative action features. We further design a self-supervised subaction parsing solution to locate and parse fine-grained subaction sequences. Then, we present the group contrastive learning with pseudo-labels to capture consistent motion-oriented action features in the two branches. We evaluate our proposed SAP-Net on four public datasets: the MTL-AQA, FineDiving, Rhythmic Gymnastics, and FineFS datasets. The experiment results show that our approach outperforms state-of-the-art semi-supervised methods by a significant margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luo发布了新的文献求助30
1秒前
2秒前
2秒前
冰淇淋完成签到,获得积分10
3秒前
宛海发布了新的文献求助10
3秒前
3秒前
忧郁的访波完成签到,获得积分10
4秒前
852应助Mayday采纳,获得10
6秒前
7秒前
小雒雒完成签到,获得积分10
8秒前
64658应助时尚的世立采纳,获得10
8秒前
L外驴尔X发布了新的文献求助10
8秒前
万松辉完成签到,获得积分10
9秒前
lin完成签到,获得积分20
10秒前
卡奇Mikey完成签到,获得积分10
11秒前
12秒前
15秒前
霸的彤发布了新的文献求助10
15秒前
water应助zzzzzz采纳,获得10
16秒前
yzm完成签到,获得积分10
17秒前
牛牛发布了新的文献求助10
19秒前
Orange应助L外驴尔X采纳,获得10
19秒前
Owen应助无聊的南松采纳,获得30
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
深情安青应助时尚的世立采纳,获得10
24秒前
Orange应助MMM采纳,获得10
26秒前
flasher22发布了新的文献求助10
26秒前
小蘑菇应助lin采纳,获得10
28秒前
29秒前
33秒前
sakiecon完成签到,获得积分10
34秒前
yangjiali完成签到 ,获得积分10
34秒前
34秒前
兔子不爱吃胡萝卜完成签到,获得积分10
35秒前
35秒前
蓝枫发布了新的文献求助10
36秒前
38秒前
何hehe完成签到 ,获得积分10
39秒前
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565