交易激励
激活剂(遗传学)
百合
转录因子
基因沉默
拟南芥
调节器
发起人
异位表达
细胞生物学
基因
生物
遗传学
基因表达
植物
突变体
作者
Ting Li,Ze Wu,Yinyi Zhang,Sujuan Xu,Jun Xiang,Liping Ding,Nianjun Teng
摘要
Heat stress transcription factors (HSFs) are core factors of plants in response to heat stress (HS), but their regulatory network is complicated and remains elusive in a large part, especially HSFBs. In this study, we reported that the LlERF012-LlHSFA1 module participates in heat stress response (HSR) by directly regulating HSF pathway in lily (Lilium longiflorum). LlHSFB1 was confirmed as a positive regulator in lily thermotolerance and a heat-inducible AP2/ERF member LlERF012 (Ethylene Response Factor 012) was further identified to be a direct trans-activator of LlHSFB1. Overexpression of LlERF012 elevated the thermotolerance of transgenic Arabidopsis and lily, but silencing LlERF012 reduced thermotolerance in lily. Further analysis showed LlERF012 interacted with LlHSFA1, which led to enhanced transactivation activity and DNA-binding capability of LlERF012. In addition, LlERF012 also directly activated the expression of LlHSFA1 by binding its promoter. As expected, we found that LlERF012 bound the promoters of LlHSFA2, LlHSFA3A, and LlHSFA3B to stimulate their expression, and LlERF012-LlHSFA1 interaction enhanced these activation effects. Overall, our data suggested that LlERF012 was a key factor for lily thermotolerance and the LlERF012-LlHSFA1 interaction synergistically regulated the activity of the HSF pathway including the class A and B members, which might be of great significance for coordinating the functions of different HSFs.
科研通智能强力驱动
Strongly Powered by AbleSci AI