零价铁
砷
镉
X射线光电子能谱
无机化学
三元络合物
钝化
红外光谱学
傅里叶变换红外光谱
核化学
化学
化学工程
物理化学
工程类
有机化学
吸附
图层(电子)
酶
作者
JianXiong Xie,Hang Wei,Mengqiang Sun,Ling Huang,Jie Zhong,Yu‐Hui Wu,Qi Zou,Zhiliang Chen
标识
DOI:10.1016/j.scitotenv.2024.175052
摘要
Co-contamination of soil and groundwater with arsenic (As) and cadmium (Cd) is widespread. Sulfidized Nanoscale Zero-Valent Iron (S-nZVI) is effective in removing As and Cd from contaminated environments. However, the mechanisms governing As and Cd removal from systems containing both species are still unclear. This study investigated the effectiveness of S-nZVI in the simultaneous removal of Cd(II) and As(III) from contaminated solutions and their interaction mechanisms. Adsorption experiments were conducted under aerobic conditions to investigate the effect of Cd(II) and As(III) on their co-immobilisation at different As(III) and Cd(II) concentrations. S-nZVI was characterised before and after the reaction to elucidate the mechanism of its simultaneous immobilisation of As(III) and Cd(II). Batch experiments revealed that the presence of Cd(II) and As(III) together considerably promotes the passivation of S-nZVI. The adsorption of Cd(II) at Cd:As = 1:3 was 198.37 mg/g, which was 27.6 % higher than that in Cd(II)-only systems, and the adsorption of As(III) at As:Cd = 1:3 was 204.05 mg/g, which was 175 % higher than that in As(III)-only systems. The results of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy indicated that the removal of Cd(II) and As(III) by S-nZVI involves electrostatic adsorption, complexation and oxidation reactions, amongst which electrostatic adsorption and ternary-complex generation are responsible for the synergistic effect. As and Cd ions can form two types of surface complexes with FeOH or FeS on the outer layer of S-nZVI: anionic bridging to form Fe-As-Cd and cationic bridging to form Fe-Cd-As. This investigation elucidates the synergistic action of Cd(II) and As(III) during their removal using S-nZVI. Thus, S-nZVI is a promising material for the combined removal of Cd(II) and As(III), which can mitigate environmental pollution.
科研通智能强力驱动
Strongly Powered by AbleSci AI