钨酸盐
材料科学
复合数
锂(药物)
阴极
硫黄
离子
无机化学
化学工程
冶金
复合材料
电气工程
有机化学
医学
化学
工程类
内分泌学
作者
Junpu Zhang,Zeren Xie,Wen Xi,Youfang Zhang,Rui Wang,Yansheng Gong,Beibei He,Huanwen Wang,Jun Jin
标识
DOI:10.1002/aenm.202401792
摘要
Abstract Lithium–sulfur (Li–S) batteries can offer high capacity and energy‐density, but face challenges like low conductivity, lithium polysulfides (LiPSs) shuttling, and limited reaction kinetics. In this study, the electronic configuration of Mo 4d orbital in MoS 2 is modulated through a one‐step method involving tungstate anion (WO 4 2− ) modulation to form a stable 1T‐MoS 2 /carbon composite (1T‐W‐MoS 2 /C). When WO 4 2− is introduced, it causes a transfer of electrons to Mo in 2H‐MoS 2 , resulting in the generation of a stable 1T phase. In the composite, 1T‐MoS 2 nanosheets exhibit remarkable electronic conductivity, hydrophilicity, and catalytic activity, facilitating the LiPSs adsorption and Li + transport. Meanwhile, the WO 4 2− modulation can create abundant adsorption/catalytic sites with defects on the basal surface and edges of MoS 2 , facilitating the efficient catalysis of LiPSs conversion. Furthermore, the 3D‐printed electrodes without utilization of binders and current collectors can ensure high mass loading and promote ion diffusion and electrolyte penetration. Theoretical and experimental results confirm that 1T‐W‐MoS 2 /C can catalyze LiPSs conversion, suppress LiPSs shuttling, and enhance sulfur reaction kinetics. Therefore, the 3D‐printed 1T‐W‐MoS 2 /C/S cathode exhibits a high initial capacity and excellent rate capability, achieving an areal capacity of 7.37 mAh cm −2 with a sulfur loading of 8.89 mg cm −2 .
科研通智能强力驱动
Strongly Powered by AbleSci AI