Winter Wheat Mapping Method Based on Pseudo-Labels and U-Net Model for Training Sample Shortage

计算机科学 样品(材料) 分割 随机森林 人工智能 经济短缺 集合(抽象数据类型) 模式识别(心理学) 数据挖掘 遥感 地理 语言学 化学 哲学 色谱法 政府(语言学) 程序设计语言
作者
Jianhua Zhang,Shucheng You,Aixia Liu,Lijian Xie,Chenhao Huang,Han Xu,Penghan Li,Yixuan Wu,Jinsong Deng
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (14): 2553-2553 被引量:6
标识
DOI:10.3390/rs16142553
摘要

In recent years, the semantic segmentation model has been widely applied in fields such as the extraction of crops due to its advantages such as strong discrimination ability, high accuracy, etc. Currently, there is no standard set of ground true label data for major crops in China, and the visual interpretation process is usually time-consuming and laborious. The sample size also makes it difficult to support the model to learn enough ground features, resulting in poor generalisation ability of the model, which in turn makes the model difficult to apply in fine extraction tasks of large-area crops. In this study, a method to establish a pseudo-label sample set based on the random forest algorithm to train a semantic segmentation model (U-Net) was proposed to perform winter wheat extraction. With the help of the GEE platform, Winter Wheat Canopy Index (WCI) indicators were employed in this method to initially extract winter wheat, and training samples (i.e., pseudo labels) were built for the semantic segmentation model through the iterative process of “generating random sample points—random forest model training—winter wheat extraction”; on this basis, the U-net model was trained with multi-time series remote sensing images; finally, the U-Net model was employed to obtain the spatial distribution map of winter wheat in Henan Province in 2022. The results illustrated that: (1) Pseudo-label data were constructed using the random forest model in typical regions, achieving an overall accuracy of 97.53% under validation with manual samples, proving that its accuracy meets the requirements for U-Net model training. (2) Utilizing the U-Net model, U-Net++ model, and random forest model constructed based on pseudo-label data for 2022, winter wheat mapping was conducted in Henan Province. The extraction accuracy of the three models is in the order of U-Net model > U-Net++ model > random forest model. (3) Using the U-Net model to predict the winter wheat planting areas in Henan Province in 2019, although the extraction accuracy decreased compared to 2022, it still exceeded that of the random forest model. Additionally, the U-Net++ model did not achieve higher classification accuracy. (4) Experimental results demonstrate that deep learning models constructed based on pseudo-labels exhibit higher classification accuracy. Compared to traditional machine learning models like random forest, they have higher spatiotemporal adaptability and robustness, further validating the scientific and practical feasibility of pseudo-labels and their generation strategies, which are expected to provide a feasible technical pathway for intelligent extraction of winter wheat spatial distribution information in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卢孤菱发布了新的文献求助10
刚刚
SUP编外人员完成签到 ,获得积分10
1秒前
3秒前
冷公子完成签到,获得积分10
4秒前
文静三颜发布了新的文献求助10
4秒前
5秒前
6秒前
ccc完成签到 ,获得积分10
6秒前
8秒前
11秒前
123发布了新的文献求助10
11秒前
11秒前
哎呀发布了新的文献求助10
11秒前
weiziho发布了新的文献求助10
12秒前
碧蓝板栗发布了新的文献求助20
12秒前
科小白完成签到,获得积分10
13秒前
lolo发布了新的文献求助10
14秒前
小二郎应助李李李采纳,获得10
14秒前
今后应助兜兜采纳,获得10
15秒前
鱼鱼鱼完成签到 ,获得积分10
15秒前
15秒前
耍酷依玉完成签到,获得积分20
15秒前
yaoyh_gc完成签到 ,获得积分10
16秒前
chenchen发布了新的文献求助10
17秒前
17秒前
星河完成签到,获得积分10
17秒前
滴滴滴完成签到,获得积分10
17秒前
qinsu发布了新的文献求助10
18秒前
Dr完成签到,获得积分10
18秒前
18秒前
小卤蛋发布了新的文献求助10
19秒前
22秒前
安白发布了新的文献求助10
23秒前
24秒前
24秒前
FashionBoy应助chenchen采纳,获得10
25秒前
小卤蛋完成签到,获得积分20
27秒前
27秒前
qinsu完成签到,获得积分20
28秒前
29秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330040
求助须知:如何正确求助?哪些是违规求助? 2959654
关于积分的说明 8596227
捐赠科研通 2638022
什么是DOI,文献DOI怎么找? 1444115
科研通“疑难数据库(出版商)”最低求助积分说明 668935
邀请新用户注册赠送积分活动 656517