Winter Wheat Mapping Method Based on Pseudo-Labels and U-Net Model for Training Sample Shortage

计算机科学 样品(材料) 分割 随机森林 人工智能 经济短缺 集合(抽象数据类型) 模式识别(心理学) 数据挖掘 遥感 地理 语言学 化学 哲学 色谱法 政府(语言学) 程序设计语言
作者
Jianhua Zhang,Shucheng You,Aixia Liu,Lijian Xie,Chenhao Huang,Han Xu,Penghan Li,Yixuan Wu,Jinsong Deng
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (14): 2553-2553 被引量:6
标识
DOI:10.3390/rs16142553
摘要

In recent years, the semantic segmentation model has been widely applied in fields such as the extraction of crops due to its advantages such as strong discrimination ability, high accuracy, etc. Currently, there is no standard set of ground true label data for major crops in China, and the visual interpretation process is usually time-consuming and laborious. The sample size also makes it difficult to support the model to learn enough ground features, resulting in poor generalisation ability of the model, which in turn makes the model difficult to apply in fine extraction tasks of large-area crops. In this study, a method to establish a pseudo-label sample set based on the random forest algorithm to train a semantic segmentation model (U-Net) was proposed to perform winter wheat extraction. With the help of the GEE platform, Winter Wheat Canopy Index (WCI) indicators were employed in this method to initially extract winter wheat, and training samples (i.e., pseudo labels) were built for the semantic segmentation model through the iterative process of “generating random sample points—random forest model training—winter wheat extraction”; on this basis, the U-net model was trained with multi-time series remote sensing images; finally, the U-Net model was employed to obtain the spatial distribution map of winter wheat in Henan Province in 2022. The results illustrated that: (1) Pseudo-label data were constructed using the random forest model in typical regions, achieving an overall accuracy of 97.53% under validation with manual samples, proving that its accuracy meets the requirements for U-Net model training. (2) Utilizing the U-Net model, U-Net++ model, and random forest model constructed based on pseudo-label data for 2022, winter wheat mapping was conducted in Henan Province. The extraction accuracy of the three models is in the order of U-Net model > U-Net++ model > random forest model. (3) Using the U-Net model to predict the winter wheat planting areas in Henan Province in 2019, although the extraction accuracy decreased compared to 2022, it still exceeded that of the random forest model. Additionally, the U-Net++ model did not achieve higher classification accuracy. (4) Experimental results demonstrate that deep learning models constructed based on pseudo-labels exhibit higher classification accuracy. Compared to traditional machine learning models like random forest, they have higher spatiotemporal adaptability and robustness, further validating the scientific and practical feasibility of pseudo-labels and their generation strategies, which are expected to provide a feasible technical pathway for intelligent extraction of winter wheat spatial distribution information in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顺拐完成签到,获得积分10
1秒前
1秒前
4秒前
海绵宝宝完成签到 ,获得积分10
4秒前
4秒前
Mea发布了新的文献求助30
4秒前
5秒前
釉质牙医发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
友好惜儿发布了新的文献求助10
6秒前
Lucas应助小狗不是抠脚兵采纳,获得10
7秒前
7秒前
CHAosLoopy发布了新的文献求助10
9秒前
北彧发布了新的文献求助10
10秒前
在水一方应助江洋大盗采纳,获得10
10秒前
hh发布了新的文献求助10
10秒前
10秒前
田様应助北彧采纳,获得10
15秒前
听风等雨发布了新的文献求助10
15秒前
16秒前
17秒前
19秒前
凡人发布了新的文献求助10
19秒前
共享精神应助Rick采纳,获得10
20秒前
ZZ发布了新的文献求助10
22秒前
片小海发布了新的文献求助10
22秒前
ED应助hh采纳,获得10
23秒前
yeyeyeye完成签到,获得积分10
23秒前
24秒前
TN完成签到,获得积分10
24秒前
ADAMWS发布了新的文献求助10
25秒前
25秒前
季风气候完成签到 ,获得积分10
26秒前
123完成签到 ,获得积分10
27秒前
Mea发布了新的文献求助30
28秒前
28秒前
江洋大盗发布了新的文献求助10
30秒前
樊书南发布了新的文献求助10
30秒前
研友_n0kYwL发布了新的文献求助10
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167