LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images

计算机科学 融合 代表(政治) 人工智能 过程(计算) 网络体系结构 图像融合 保险丝(电气) 深度学习 传感器融合 任务(项目管理) 机器学习 模式识别(心理学) 图像(数学) 工程类 电气工程 哲学 操作系统 政治 语言学 法学 系统工程 计算机安全 政治学
作者
Hui Li,Tianyang Xu,Xiaojun Wu,Jiwen Lu,Josef Kittler
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2304.05172
摘要

Deep learning based fusion methods have been achieving promising performance in image fusion tasks. This is attributed to the network architecture that plays a very important role in the fusion process. However, in general, it is hard to specify a good fusion architecture, and consequently, the design of fusion networks is still a black art, rather than science. To address this problem, we formulate the fusion task mathematically, and establish a connection between its optimal solution and the network architecture that can implement it. This approach leads to a novel method proposed in the paper of constructing a lightweight fusion network. It avoids the time-consuming empirical network design by a trial-and-test strategy. In particular we adopt a learnable representation approach to the fusion task, in which the construction of the fusion network architecture is guided by the optimisation algorithm producing the learnable model. The low-rank representation (LRR) objective is the foundation of our learnable model. The matrix multiplications, which are at the heart of the solution are transformed into convolutional operations, and the iterative process of optimisation is replaced by a special feed-forward network. Based on this novel network architecture, an end-to-end lightweight fusion network is constructed to fuse infrared and visible light images. Its successful training is facilitated by a detail-to-semantic information loss function proposed to preserve the image details and to enhance the salient features of the source images. Our experiments show that the proposed fusion network exhibits better fusion performance than the state-of-the-art fusion methods on public datasets. Interestingly, our network requires a fewer training parameters than other existing methods. The codes are available at https://github.com/hli1221/imagefusion-LRRNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扬子发布了新的文献求助30
刚刚
summer完成签到,获得积分10
刚刚
刚刚
天涯完成签到,获得积分10
刚刚
研友_IEEE快到碗里来完成签到,获得积分10
刚刚
灯座发布了新的文献求助10
刚刚
面面完成签到,获得积分10
刚刚
刚刚
CAIWEN完成签到,获得积分10
1秒前
1秒前
CJZOU完成签到,获得积分10
1秒前
orixero应助小太阳采纳,获得10
2秒前
2秒前
Jonathan完成签到,获得积分10
2秒前
dddd完成签到,获得积分10
2秒前
hsn完成签到,获得积分10
2秒前
sansronds完成签到,获得积分10
3秒前
Lze发布了新的文献求助20
3秒前
天涯发布了新的文献求助10
4秒前
奋斗的苹果完成签到,获得积分10
4秒前
大花花完成签到,获得积分10
4秒前
脑洞疼应助呆萌幼晴采纳,获得10
4秒前
4秒前
刘辞忧完成签到 ,获得积分10
4秒前
SATone完成签到,获得积分10
5秒前
5秒前
呼呼完成签到,获得积分10
5秒前
5秒前
Coarrb完成签到,获得积分10
5秒前
ylf发布了新的文献求助10
6秒前
胡小溪完成签到,获得积分10
6秒前
温暖的冬天完成签到,获得积分10
6秒前
从容雅柏完成签到,获得积分10
6秒前
JamesPei应助Lihuining采纳,获得10
6秒前
zy关注了科研通微信公众号
6秒前
大盘菜应助灯座采纳,获得10
7秒前
毅可爱完成签到,获得积分10
7秒前
充电宝应助灯座采纳,获得10
7秒前
无颜猪发布了新的文献求助10
7秒前
桐桐应助guochenggong采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017