NLRP3 Inflammasome Mediates Silica-induced Lung Epithelial Injury and Aberrant Regeneration in Lung Stem/Progenitor Cell-derived Organotypic Models

炎症体 祖细胞 细胞生物学 再生(生物学) 干细胞 Wnt信号通路 呼吸上皮 癌症研究 炎症 生物 上皮 免疫学 病理 医学 信号转导
作者
Hong Zhao,Qun Zhang,Hao Wen,Shulan Zhou,Yanli Wang,Xianlu Zeng,Hong Wang,Wei Xie,Hui Kong
出处
期刊:International Journal of Biological Sciences [Ivyspring International Publisher]
卷期号:19 (6): 1875-1893 被引量:1
标识
DOI:10.7150/ijbs.80605
摘要

Silica-induced lung epithelial injury and fibrosis are vital pathogeneses of silicosis. Although the NOD-like receptor protein 3 (NLRP3) inflammasome contributes to silica-induced chronic lung inflammation, its role in epithelial injury and regeneration remains unclear. Here, using mouse lung stem/progenitor cell-derived organotypic systems, including 2D air-liquid interface and 3D organoid cultures, we investigated the effects of the NLRP3 inflammasome on airway epithelial phenotype and function, cellular injury and regeneration, and the potential mechanisms. Our data showed that silica-induced NLRP3 inflammasome activation disrupted the epithelial architecture, impaired mucociliary clearance, induced cellular hyperplasia and the epithelial-mesenchymal transition in 2D culture, and inhibited organoid development in 3D system. Moreover, abnormal expression of the stem/progenitor cell markers SOX2 and SOX9 was observed in the 2D and 3D organotypic models after sustained silica stimulation. Notably, these silica-induced structural and functional abnormalities were ameliorated by MCC950, a selective NLRP3 inflammasome inhibitor. Further studies indicated that the NF-κB, Shh-Gli and Wnt/β-catenin pathways were involved in NLRP3 inflammasome-mediated abnormal differentiation and dysfunction of the airway epithelium. Thus, prolonged NLRP3 inflammasome activation caused injury and aberrant lung epithelial regeneration, suggesting that the NLRP3 inflammasome is a pivotal target for regulating tissue repair in chronic inflammatory lung diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
tsw发布了新的文献求助10
2秒前
wanci应助chang采纳,获得10
3秒前
yue完成签到 ,获得积分10
3秒前
大模型应助somous采纳,获得10
4秒前
研友_Z1eDgZ发布了新的文献求助30
5秒前
7秒前
eachon发布了新的文献求助10
7秒前
NexusExplorer应助无辜渊思采纳,获得10
7秒前
8秒前
8秒前
大模型应助三微之廿采纳,获得10
9秒前
phoenix完成签到,获得积分0
10秒前
nana完成签到,获得积分10
10秒前
10秒前
陌小石完成签到 ,获得积分10
10秒前
10秒前
科研通AI5应助快乐排骨汤采纳,获得10
10秒前
英姑应助laiq采纳,获得10
11秒前
12秒前
13秒前
15秒前
15秒前
美好斓发布了新的文献求助30
16秒前
Bruce Lin发布了新的文献求助10
16秒前
Y1234应助eachon采纳,获得10
17秒前
17秒前
彩虹猫完成签到 ,获得积分10
17秒前
17秒前
Morgans00发布了新的文献求助10
18秒前
Yiy发布了新的文献求助20
18秒前
yar应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
18秒前
小马甲应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
laiq完成签到,获得积分20
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486446
求助须知:如何正确求助?哪些是违规求助? 3074784
关于积分的说明 9138081
捐赠科研通 2766897
什么是DOI,文献DOI怎么找? 1518363
邀请新用户注册赠送积分活动 702909
科研通“疑难数据库(出版商)”最低求助积分说明 701501