Highly Conductive, Ultrastrong, and Flexible Wet-Spun PEDOT:PSS/Ionic Liquid Fibers for Wearable Electronics

材料科学 佩多:嘘 离子液体 复合材料 拉曼光谱 结晶度 纤维 X射线光电子能谱 化学工程 聚合物 光学 有机化学 化学 物理 催化作用 工程类
作者
Huijun Chen,Huimin Xu,Mengying Luo,Wen Wang,Xing Qing,Ying Lü,Qiongzhen Liu,Liyan Yang,Weibing Zhong,Mufang Li,Dong Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (16): 20346-20357 被引量:31
标识
DOI:10.1021/acsami.3c00155
摘要

Conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fibers with high electrical conductivity, flexibility, and robustness are urgently needed for constructing wearable fiber-based electronics. In this study, the highly conductive (4288 S/cm), ultrastrong (a high tensile strength of 956 MPa), and flexible (a low Young's modulus of 3.8 GPa) PEDOT:PSS/1-ethyl-3-methylimidazolium dicyanamide (EMIM:DCA) (P/ED) fiber was prepared by wet-spinning and a subsequent H2SO4-immersion-drawing process. As far as we know, this is the best performance of the PEDOT:PSS fiber reported so far. The structure and conformation of the P/ED fiber were characterized by FESEM, XPS, Raman spectroscopy, UV-vis-NIR spectroscopy, and WAXS. The results show that the high performances of the P/ED fiber are mainly attributed to the massive removal of PSS and high degree of crystallinity (87.9%) and orientation (0.71) of PEDOT caused by the synergistic effect of the ionic liquid, concentrated sulfuric acid, and high stretching. Besides, the P/ED fiber shows a small bending radius of 0.1 mm, and the conductivity of the P/ED fiber is nearly unchanged after 1000 repeated cycles of bending and humidity changes within 50-90%. Based on this, various P/ED fiber-based devices including the circuit connection wire, thermoelectric power generator, and temperature sensor were constructed, demonstrating its wide applications for constructing flexible and wearable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文完成签到,获得积分20
刚刚
Yimi完成签到,获得积分10
1秒前
小巧凝丹完成签到,获得积分10
1秒前
1秒前
2秒前
善良过客完成签到,获得积分10
2秒前
贪玩的宛凝完成签到,获得积分10
2秒前
3秒前
4秒前
倔强的大萝卜完成签到,获得积分0
4秒前
5秒前
5秒前
5秒前
6秒前
Ankangg完成签到,获得积分10
6秒前
啊啊啊完成签到 ,获得积分10
6秒前
aaaabc发布了新的文献求助20
6秒前
摆烂王子完成签到,获得积分10
7秒前
小离完成签到,获得积分10
7秒前
大个应助哲999采纳,获得10
8秒前
萌道发布了新的文献求助10
8秒前
8秒前
8秒前
yrea完成签到,获得积分10
8秒前
9秒前
JamesPei应助白华苍松采纳,获得10
10秒前
wangn发布了新的文献求助10
10秒前
挽歌发布了新的文献求助10
10秒前
10秒前
Zhang发布了新的文献求助10
10秒前
Owen应助jogrgr采纳,获得10
10秒前
wjw关闭了wjw文献求助
10秒前
11秒前
11秒前
11秒前
11秒前
Ava应助侦察兵采纳,获得10
12秒前
12秒前
rookie_b0发布了新的文献求助10
12秒前
邓代容完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759