Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects

医学 背景(考古学) 癌症 生物信息学 计算生物学 内科学 生物 古生物学
作者
Edo Kon,Nitay Ad-El,Inbal Hazan‐Halevy,Lior Stotsky‐Oterin,Dan Peer
出处
期刊:Nature Reviews Clinical Oncology [Springer Nature]
卷期号:20 (11): 739-754 被引量:83
标识
DOI:10.1038/s41571-023-00811-9
摘要

Harnessing mRNA–lipid nanoparticles (LNPs) to treat patients with cancer has been an ongoing research area that started before these versatile nanoparticles were successfully used as COVID-19 vaccines. Currently, efforts are underway to harness this platform for oncology therapeutics, mainly focusing on cancer vaccines targeting multiple neoantigens or direct intratumoural injections of mRNA–LNPs encoding pro-inflammatory cytokines. In this Review, we describe the opportunities of using mRNA–LNPs in oncology applications and discuss the challenges for successfully translating the findings of preclinical studies of these nanoparticles into the clinic. We critically appraise the potential of various mRNA–LNP targeting and delivery strategies, considering physiological, technological and manufacturing challenges. We explore these approaches in the context of the potential clinical applications best suited to each approach and highlight the obstacles that currently need to be addressed to achieve these applications. Finally, we provide insights from preclinical and clinical studies that are leading to this powerful platform being considered the next frontier in oncology treatment. In oncology, mRNA–lipid nanoparticles (LNPs) have been used either to achieve intratumoural expression of immune-stimulating cytokine combinations or as cancer vaccines, and new strategies are in development to enable the selective delivery of payloads into cancer cells previously considered unreachable. The authors of this Review present various approaches for delivering mRNA–LNPs to tumours and discuss improvements that will improve the selective targeting of cancer cells with mRNA–LNPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
odell完成签到,获得积分10
刚刚
lcw完成签到 ,获得积分10
1秒前
2秒前
2秒前
洋葱完成签到 ,获得积分10
2秒前
大个应助鱼大仙采纳,获得10
7秒前
7秒前
心信鑫完成签到 ,获得积分10
8秒前
苦我心志完成签到 ,获得积分10
9秒前
阳光洒进暖巷完成签到,获得积分10
9秒前
Orange应助快乐的呼呼采纳,获得10
10秒前
科研小白完成签到,获得积分10
12秒前
痛失饭搭子完成签到 ,获得积分10
14秒前
14秒前
BBlong应助危机的小丸子采纳,获得10
15秒前
科研小白发布了新的文献求助10
16秒前
鸣鸣完成签到,获得积分10
17秒前
18秒前
勤奋的姒完成签到 ,获得积分10
20秒前
鱼大仙发布了新的文献求助10
20秒前
小刘在学习完成签到,获得积分20
22秒前
23秒前
科研通AI2S应助食杂砸采纳,获得10
25秒前
26秒前
27秒前
30秒前
31秒前
goodddddddddy发布了新的文献求助10
31秒前
酷炫笑翠发布了新的文献求助10
33秒前
小蘑菇应助叮咚叮咚采纳,获得10
33秒前
zhangmaomao完成签到 ,获得积分10
34秒前
科研小白完成签到,获得积分10
37秒前
37秒前
Heidi发布了新的文献求助10
37秒前
37秒前
科研通AI2S应助goodddddddddy采纳,获得10
38秒前
星辰大海应助灰原采纳,获得10
39秒前
39秒前
奶油橘子完成签到,获得积分10
41秒前
路痴发布了新的文献求助200
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136234
求助须知:如何正确求助?哪些是违规求助? 2787225
关于积分的说明 7780556
捐赠科研通 2443265
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870