Person re-identification (ReID) is a challenging task that aims to identify individuals across multiple non-overlapping camera views. To enhance the performance and robustness of ReID models, it is crucial to train them over multiple data sources. However, the traditional centralized approach poses a significant challenge to privacy as it requires collecting data from distributed data owners. To overcome this challenge, we employ the federated learning approach, which enables distributed model training without compromising data privacy. In this paper, we propose a novel feature-aware local proximity and global aggregation method for federated ReID to extract robust feature representations. Specifically, we introduce a proximal term and a feature regularization term for local model training to improve local training accuracy while ensuring global aggregation convergence. Furthermore, we use the cosine distance of backbone features to determine the global aggregation weight of each local model. Our proposed method significantly improves the performance and generalization of the global model. Extensive experiments demonstrate the effectiveness of our proposal. Specifically, our method achieves an additional 27.3% Rank-1 average accuracy in federated full supervision and an extra 20.3% mean Average Precision (mAP) on DukeMTMC in federated domain generalization.