计算机科学
稳健性(进化)
联合学习
正规化(语言学)
特征(语言学)
人工智能
一般化
数据挖掘
机器学习
数据聚合器
数学
无线传感器网络
数学分析
计算机网络
生物化学
化学
语言学
哲学
基因
作者
Pengling Zhang,Huibin Yan,Wenhui Wu,Shuoyao Wang
标识
DOI:10.1145/3581783.3612350
摘要
Person re-identification (ReID) is a challenging task that aims to identify individuals across multiple non-overlapping camera views. To enhance the performance and robustness of ReID models, it is crucial to train them over multiple data sources. However, the traditional centralized approach poses a significant challenge to privacy as it requires collecting data from distributed data owners. To overcome this challenge, we employ the federated learning approach, which enables distributed model training without compromising data privacy. In this paper, we propose a novel feature-aware local proximity and global aggregation method for federated ReID to extract robust feature representations. Specifically, we introduce a proximal term and a feature regularization term for local model training to improve local training accuracy while ensuring global aggregation convergence. Furthermore, we use the cosine distance of backbone features to determine the global aggregation weight of each local model. Our proposed method significantly improves the performance and generalization of the global model. Extensive experiments demonstrate the effectiveness of our proposal. Specifically, our method achieves an additional 27.3% Rank-1 average accuracy in federated full supervision and an extra 20.3% mean Average Precision (mAP) on DukeMTMC in federated domain generalization.
科研通智能强力驱动
Strongly Powered by AbleSci AI