结核(地质)
采样(信号处理)
计算机科学
肺
肺癌
特征(语言学)
数据集
光学(聚焦)
人工智能
模式识别(心理学)
放射科
医学
病理
内科学
计算机视觉
生物
古生物学
语言学
哲学
物理
滤波器(信号处理)
光学
作者
Jiancheng Li,Junying Gan,Lu Cao,Xuexia Xu
出处
期刊:Communications in computer and information science
日期:2023-01-01
卷期号:: 388-398
标识
DOI:10.1007/978-981-99-7549-5_28
摘要
Lung nodules, an early indication of lung cancer, are crucial for its treatment. Existing studies primarily focus on improving model structures, neglecting the issue of data imbalance in lung nodule classification. In this work, we propose a multiple-stage stratified sampling (MS-SS) to address the issue of data imbalance. This approach aims to achieve data balance while preserving the original data distribution structure to the maximum extent. Additionally, we introduce the SE-ResNet152 model combined with transfer learning to handle lung nodule classification, enabling feature recalibration through the SE module. To evaluate the proposed method, experiments are conducted on the Luna16 dataset. The results demonstrate a remarkable F1-Score of 96.358% on the test set, confirming the effectiveness of our approach in accurately classifying lung nodules.
科研通智能强力驱动
Strongly Powered by AbleSci AI