Voltage fault diagnosis and misdiagnosis analysis of battery systems using the modified Shannon entropy in real-world electric vehicles

断层(地质) 假警报 电压 计算机科学 熵(时间箭头) 可靠性(半导体) 电池(电) 警报 可靠性工程 灵敏度(控制系统) 实时计算 功率(物理) 工程类 电子工程 人工智能 电气工程 物理 量子力学 地震学 地质学
作者
Qiquan Liu,Jian Ma,Xuan Zhao,Kai Zhang,Kang Xiangli,Dean Meng,Jianping Wang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:73: 109287-109287 被引量:13
标识
DOI:10.1016/j.est.2023.109287
摘要

Power battery systems fault diagnosis of electric vehicles (EVs) is a key technical approach to ensure the safety and reliable operation of the vehicle, of which avoiding misdiagnosis not only can reduce the driver's safety concerns, but also is a reflection of the reliability of the diagnostic method. This paper first proposes a modified Shannon entropy-based battery fault diagnosis method for identifying cells with abnormal voltage fluctuations in battery systems, and the method is implemented online by calculating the Shannon entropy of the voltage sequence in a moving time window. Then, the defined sensitivity factor (SF) can provide an efficient and accurate assessment of the extent of abnormal voltage fluctuations. Further, to improve the fault diagnosis accuracy of the method, we validated the diagnostic model by using battery operation data from a battery monitoring cloud platform with a sampling frequency of 0.1 Hz and eventually found a large number of false alarm cells in the diagnostic results. Based on this, we have analysed the fault diagnosis mechanisms of the model and thus obtained the causes of misdiagnosis. Finally, a solution to reduce misdiagnosis is proposed and its effectiveness is verified. To further test its comprehensive performance, we compared the accuracy of the method before and after optimization based on normal vehicle data, and the results showed a 81.9 % reduction in the average relative misdiagnosis rate of the model, thus greatly improving the reliability of this fault diagnosis strategy, creating conditions for the online application of the method and providing ideas for the analysis and improvement of the accuracy rate of other fault diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
西兰花发布了新的文献求助10
1秒前
1459完成签到,获得积分10
1秒前
体贴的小天鹅完成签到,获得积分10
2秒前
yaoyaoyao发布了新的文献求助10
2秒前
2秒前
3秒前
七仔发布了新的文献求助10
4秒前
4秒前
4秒前
wanci应助拼搏的青雪采纳,获得10
4秒前
5秒前
临江仙完成签到 ,获得积分10
6秒前
6秒前
阿坤发布了新的文献求助10
7秒前
LL完成签到,获得积分10
7秒前
完美世界应助dfggg采纳,获得10
7秒前
自信画笔发布了新的文献求助10
8秒前
TheaGao发布了新的文献求助200
10秒前
11秒前
11秒前
huiluowork发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
jl发布了新的文献求助10
11秒前
12秒前
Akim应助温柔的迎荷采纳,获得10
13秒前
ala完成签到,获得积分10
13秒前
14秒前
包容凡英发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
调研昵称发布了新的文献求助10
17秒前
17秒前
17秒前
Lucky发布了新的文献求助10
18秒前
善学以致用应助jl采纳,获得10
19秒前
科研通AI5应助西兰花采纳,获得10
20秒前
慕青应助smoli采纳,获得30
20秒前
pcr163应助科研通管家采纳,获得50
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546536
求助须知:如何正确求助?哪些是违规求助? 3123667
关于积分的说明 9356348
捐赠科研通 2822331
什么是DOI,文献DOI怎么找? 1551314
邀请新用户注册赠送积分活动 723326
科研通“疑难数据库(出版商)”最低求助积分说明 713699