光电阴极
异质结
原位
材料科学
分解水
光电子学
纳米技术
工程物理
化学
光催化
物理
催化作用
电子
生物化学
量子力学
有机化学
作者
Juan Zhang,Xiutao Liu,Yahui Li,Kaixin Zhang,Xiaosong Yang,Huibin Shi,Daliang Liu,Xi‐Ming Song,Zhining Song,Shuo Li
标识
DOI:10.1016/j.jallcom.2023.172575
摘要
A desirable heterogeneous structure is crucial in decreasing the photocurrent density loss of CuBi2O4-based photocathodes. However, the introduction of a cover layer that is prone to falling off and a complicated preparation process increases the cost of preparing the photocathode. Therefore, we propose a two-step electrodeposition method for constructing dendritic CuBi2O4/CuO heterojunction photocathodes in situ which achieve a photocurrent density up to − 1.13 mA cm−2 at 0.3 V vs. RHE. The enhancement performance of PEC is attributed to the presence of an interfacial electric field at the heterojunction, which promotes the separation of photogenerated electron-hole pairs and prolongs the charge lifetime. Furthermore, we loaded MoS2 on CuBi2O4/CuO to obtain a CuBi2O4/CuO/MoS2 photocathode. An unbiased tandem overall water splitting device was constructed with CuBi2O4/CuO/MoS2 as the photocathode as well as BiVO4/FeOOH/NiOOH as the photoanode, attaining a solar-hydrogen (STH) conversion efficiency of about 1.47%. With our results, the in-situ construction of heterogeneous structures has the potential to bring about the development of efficient and economical water splitting techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI