Prediction of organic compound aqueous solubility using machine learning: a comparison study of descriptor-based and fingerprints-based models

溶解度 指纹(计算) 均方误差 试验装置 分子描述符 计算机科学 随机森林 预测建模 人工智能 生物系统 训练集 实验数据 决定系数 数据挖掘 机器学习 数量结构-活动关系 化学 数学 统计 有机化学 生物
作者
Arash Tayyebi,Ali Alshami,Zeinab Rabiei,Xue Yu,Nadhem Ismail,Musabbir Jahan Talukder,Jason Power
出处
期刊:Journal of Cheminformatics [Springer Nature]
卷期号:15 (1) 被引量:20
标识
DOI:10.1186/s13321-023-00752-6
摘要

A reliable and practical determination of a chemical species' solubility in water continues to be examined using empirical observations and exhaustive experimental studies alone. Predictions of chemical solubility in water using data-driven algorithms can allow us to create a rationally designed, efficient, and cost-effective tool for next-generation materials and chemical formulations. We present results from two machine learning (ML) modeling studies to adequately predict various species' solubility using data for over 8400 compounds. Molecular-descriptors, the most used method in previous studies, and Morgan fingerprint, a circular-based hash of the molecules' structures, were applied to produce water solubility estimates. We trained all models on 80% of the total datasets using the Random Forest (RFs) technique as the regressor and tested the prediction performance using the remaining 20%, resulting in coefficient of determination (R2) test values of 0.88 and 0.81 and root-mean-square deviation (RMSE) test values 0.64 and 0.80 for the descriptors and circular fingerprint methods, respectively. We interpreted the produced ML models and reported the most effective features for aqueous solubility measures using the Shapley Additive exPlanations (SHAP) and thermodynamic analysis. Low error, ability to investigate the molecular-level interactions, and compatibility with thermodynamic quantities made the fingerprint method a distinct model compared to other available computational tools. However, it is worth emphasizing that physicochemical descriptor model outperformed the fingerprint model in achieving better predictive accuracy for the given test set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ccxb1014ft发布了新的文献求助10
1秒前
Cranberry完成签到,获得积分10
3秒前
Johnny发布了新的文献求助10
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
跳跃仙人掌应助qiuling采纳,获得30
4秒前
chen完成签到,获得积分20
4秒前
JamesPei应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
cuiyy完成签到,获得积分10
5秒前
5秒前
猪猪hero应助科研通管家采纳,获得10
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
猪猪hero应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
Wangyingjie5完成签到,获得积分10
8秒前
上官若男应助KX2024采纳,获得10
8秒前
倒霉兔子完成签到,获得积分0
9秒前
毕春宇完成签到,获得积分10
9秒前
Giroro_roro发布了新的文献求助10
9秒前
桐桐应助cra采纳,获得20
10秒前
yu完成签到,获得积分10
11秒前
SciGPT应助宝宝采纳,获得10
11秒前
老三发布了新的文献求助10
11秒前
徐反宁完成签到,获得积分10
11秒前
wanghao4799完成签到,获得积分10
12秒前
退堂鼓大王完成签到 ,获得积分10
12秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408846
求助须知:如何正确求助?哪些是违规求助? 3012784
关于积分的说明 8855969
捐赠科研通 2700132
什么是DOI,文献DOI怎么找? 1480218
科研通“疑难数据库(出版商)”最低求助积分说明 684251
邀请新用户注册赠送积分活动 678578