A multi-model method for tool wear prediction with deep temporal features and correlation alignment

刀具磨损 机械加工 计算机科学 均方误差 卷积神经网络 人工神经网络 人工智能 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 数学 统计 工程类 机械工程 电子工程
作者
Jian Dong,C. Tao,Yubo Gao,Depeng Su,Hua Jiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015604-015604
标识
DOI:10.1088/1361-6501/ad03b6
摘要

Abstract Accurate prediction of tool wear is essential to ensure the machining quality of parts. However, in the actual milling process, the data distribution varies greatly between sensor signals due to variations in individual tools and machining parameters; moreover, a single deep learning model is less reliable when processing a large volume of signals. All these problems make accurate tool wear prediction challenging. Therefore, we propose a multi-model method with two-stage. In the first stage, the tool wear data is initially divided into two parts. For each part, we design a correlation-aligned multiscale convolutional temporal attention gated recurrent neural network model to perform preliminary prediction, aiming at extracting the deep temporal features from diverse signals and mitigating the sensitivity of the features to the changes in data distributions. In the second stage, we adaptively aggregate the preliminary prediction from multiple models to obtain the final prediction via a joint decision-making module to extend the decision boundary of single model and improve the tool wear prediction performance. Finally, two sets of experiments are conducted for different tools and machining conditions. The experimental results show that our proposed method significantly reduces the root mean square error (RMSE) by 15% and the mean absolute error by 18% compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通~发布了新的文献求助10
刚刚
橘子哥完成签到,获得积分10
刚刚
mnm发布了新的文献求助10
1秒前
柔弱凡松发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
SHDeathlock发布了新的文献求助50
2秒前
乐乐应助hu970采纳,获得10
2秒前
单薄白薇完成签到,获得积分10
4秒前
陈杰发布了新的文献求助10
4秒前
4秒前
4秒前
小张张发布了新的文献求助10
4秒前
乐乐应助YAN采纳,获得10
5秒前
迷惘墨香完成签到 ,获得积分10
6秒前
6秒前
Cynthia发布了新的文献求助30
6秒前
共享精神应助shenyanlei采纳,获得10
7秒前
wwww发布了新的文献求助10
7秒前
蔡菜菜完成签到,获得积分10
8秒前
852应助小余采纳,获得10
8秒前
饱满秋完成签到,获得积分10
9秒前
夜白发布了新的文献求助20
9秒前
搜集达人应助明月清风采纳,获得10
9秒前
希夷发布了新的文献求助10
10秒前
10秒前
爆米花应助通~采纳,获得10
10秒前
苏靖完成签到,获得积分10
10秒前
luoyutian发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
科研通AI5应助猪猪采纳,获得10
11秒前
11秒前
海绵体宝宝应助an采纳,获得10
12秒前
wwww完成签到,获得积分10
12秒前
12秒前
桐桐应助柔弱凡松采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762