A multi-model method for tool wear prediction with deep temporal features and correlation alignment

刀具磨损 机械加工 计算机科学 均方误差 卷积神经网络 人工神经网络 人工智能 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 数学 统计 工程类 机械工程 电子工程
作者
Jian Dong,C. Tao,Yubo Gao,Depeng Su,Hua Jiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015604-015604
标识
DOI:10.1088/1361-6501/ad03b6
摘要

Abstract Accurate prediction of tool wear is essential to ensure the machining quality of parts. However, in the actual milling process, the data distribution varies greatly between sensor signals due to variations in individual tools and machining parameters; moreover, a single deep learning model is less reliable when processing a large volume of signals. All these problems make accurate tool wear prediction challenging. Therefore, we propose a multi-model method with two-stage. In the first stage, the tool wear data is initially divided into two parts. For each part, we design a correlation-aligned multiscale convolutional temporal attention gated recurrent neural network model to perform preliminary prediction, aiming at extracting the deep temporal features from diverse signals and mitigating the sensitivity of the features to the changes in data distributions. In the second stage, we adaptively aggregate the preliminary prediction from multiple models to obtain the final prediction via a joint decision-making module to extend the decision boundary of single model and improve the tool wear prediction performance. Finally, two sets of experiments are conducted for different tools and machining conditions. The experimental results show that our proposed method significantly reduces the root mean square error (RMSE) by 15% and the mean absolute error by 18% compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
啦啦咔嘞发布了新的文献求助10
1秒前
蛋挞完成签到,获得积分10
1秒前
星辰大海应助jjj采纳,获得10
2秒前
2秒前
Advance.Cheng完成签到,获得积分10
2秒前
学术垃圾完成签到,获得积分10
3秒前
3秒前
yar应助生动的初柳采纳,获得10
3秒前
源源元发布了新的文献求助10
3秒前
4秒前
黎笙完成签到,获得积分10
4秒前
壮观的擎发布了新的文献求助10
4秒前
5秒前
杨大泡泡完成签到 ,获得积分10
5秒前
drywell发布了新的文献求助10
5秒前
所所应助许十五采纳,获得10
5秒前
MnO2fff完成签到,获得积分10
5秒前
LEMONS应助袁小圆采纳,获得10
6秒前
芋头cc完成签到,获得积分10
6秒前
6秒前
ycx完成签到,获得积分20
6秒前
7秒前
西灵壹发布了新的文献求助10
7秒前
机灵冬灵发布了新的文献求助10
7秒前
勤劳的小牛蛙应助hdbys采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Annora完成签到,获得积分10
8秒前
老默完成签到,获得积分10
8秒前
9秒前
zero完成签到 ,获得积分10
9秒前
夜雨声烦完成签到,获得积分20
10秒前
可爱的函函应助Chaimengdi采纳,获得10
10秒前
woollen2022发布了新的文献求助10
12秒前
12秒前
卡卡可可完成签到,获得积分10
12秒前
12秒前
暖暖完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785