A multi-model method for tool wear prediction with deep temporal features and correlation alignment

刀具磨损 机械加工 计算机科学 均方误差 卷积神经网络 人工神经网络 人工智能 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 数学 统计 工程类 机械工程 电子工程
作者
Jian Dong,C. Tao,Yubo Gao,Depeng Su,Hua Jiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015604-015604
标识
DOI:10.1088/1361-6501/ad03b6
摘要

Abstract Accurate prediction of tool wear is essential to ensure the machining quality of parts. However, in the actual milling process, the data distribution varies greatly between sensor signals due to variations in individual tools and machining parameters; moreover, a single deep learning model is less reliable when processing a large volume of signals. All these problems make accurate tool wear prediction challenging. Therefore, we propose a multi-model method with two-stage. In the first stage, the tool wear data is initially divided into two parts. For each part, we design a correlation-aligned multiscale convolutional temporal attention gated recurrent neural network model to perform preliminary prediction, aiming at extracting the deep temporal features from diverse signals and mitigating the sensitivity of the features to the changes in data distributions. In the second stage, we adaptively aggregate the preliminary prediction from multiple models to obtain the final prediction via a joint decision-making module to extend the decision boundary of single model and improve the tool wear prediction performance. Finally, two sets of experiments are conducted for different tools and machining conditions. The experimental results show that our proposed method significantly reduces the root mean square error (RMSE) by 15% and the mean absolute error by 18% compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcx完成签到,获得积分10
1秒前
徐恭完成签到,获得积分10
3秒前
zhangzhangzhang完成签到,获得积分10
3秒前
烂漫绮波发布了新的文献求助10
4秒前
5秒前
8秒前
8秒前
ding应助Juvigate采纳,获得10
9秒前
华仔应助ddd采纳,获得10
10秒前
11秒前
wanci应助hbhsjk采纳,获得10
11秒前
anya完成签到 ,获得积分10
12秒前
12秒前
zcx发布了新的文献求助10
15秒前
情怀应助疯狂的天宇采纳,获得10
15秒前
oyfff完成签到 ,获得积分10
16秒前
Cc发布了新的文献求助10
16秒前
17秒前
ding应助烂漫绮波采纳,获得50
17秒前
深情安青应助梓晴采纳,获得10
18秒前
lml应助kek采纳,获得10
21秒前
Juvigate发布了新的文献求助10
22秒前
orixero应助znlion采纳,获得10
22秒前
核桃发布了新的文献求助10
25秒前
浮游应助ssssen采纳,获得10
26秒前
Cc完成签到,获得积分20
26秒前
哦莫卡卡完成签到,获得积分10
27秒前
蕊蕊关注了科研通微信公众号
30秒前
科研通AI6应助小李子采纳,获得10
30秒前
勤qin完成签到 ,获得积分10
31秒前
zheng2001发布了新的文献求助10
32秒前
Tonionnn完成签到,获得积分20
34秒前
36秒前
林摆摆完成签到,获得积分10
37秒前
CipherSage应助Sylvia采纳,获得10
38秒前
41秒前
Hao发布了新的文献求助10
41秒前
852应助笑点低的孤菱采纳,获得10
45秒前
蕊蕊发布了新的文献求助10
48秒前
复杂万仇完成签到 ,获得积分10
51秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209018
求助须知:如何正确求助?哪些是违规求助? 4386324
关于积分的说明 13660666
捐赠科研通 4245433
什么是DOI,文献DOI怎么找? 2329264
邀请新用户注册赠送积分活动 1327101
关于科研通互助平台的介绍 1279391