A multi-model method for tool wear prediction with deep temporal features and correlation alignment

刀具磨损 机械加工 计算机科学 均方误差 卷积神经网络 人工神经网络 人工智能 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 数学 统计 工程类 机械工程 电子工程
作者
Jian Dong,C. Tao,Yubo Gao,Depeng Su,Hua Jiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015604-015604
标识
DOI:10.1088/1361-6501/ad03b6
摘要

Abstract Accurate prediction of tool wear is essential to ensure the machining quality of parts. However, in the actual milling process, the data distribution varies greatly between sensor signals due to variations in individual tools and machining parameters; moreover, a single deep learning model is less reliable when processing a large volume of signals. All these problems make accurate tool wear prediction challenging. Therefore, we propose a multi-model method with two-stage. In the first stage, the tool wear data is initially divided into two parts. For each part, we design a correlation-aligned multiscale convolutional temporal attention gated recurrent neural network model to perform preliminary prediction, aiming at extracting the deep temporal features from diverse signals and mitigating the sensitivity of the features to the changes in data distributions. In the second stage, we adaptively aggregate the preliminary prediction from multiple models to obtain the final prediction via a joint decision-making module to extend the decision boundary of single model and improve the tool wear prediction performance. Finally, two sets of experiments are conducted for different tools and machining conditions. The experimental results show that our proposed method significantly reduces the root mean square error (RMSE) by 15% and the mean absolute error by 18% compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8Qgvbn发布了新的文献求助10
1秒前
慕青应助黄bb采纳,获得10
1秒前
李爱国应助姜维采纳,获得10
1秒前
2秒前
甜美小蕾发布了新的文献求助10
3秒前
cjn发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6应助六根清净采纳,获得10
3秒前
yyy发布了新的文献求助10
3秒前
星辰坠于海应助鲁旭采纳,获得20
5秒前
6秒前
7秒前
violin完成签到,获得积分10
7秒前
大模型应助Rita采纳,获得10
8秒前
神探完成签到 ,获得积分10
8秒前
10秒前
Sudon完成签到 ,获得积分10
10秒前
11秒前
Akim应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
金皓东完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
陈末应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
12秒前
lqz07发布了新的文献求助10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得30
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
大龙哥886应助科研通管家采纳,获得10
12秒前
打打应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548256
关于积分的说明 14212896
捐赠科研通 4468451
什么是DOI,文献DOI怎么找? 2449037
邀请新用户注册赠送积分活动 1439959
关于科研通互助平台的介绍 1416594