Deep learning-based solid component measuring enabled interpretable prediction of tumor invasiveness for lung adenocarcinoma

医学 接收机工作特性 曲线下面积 曲线下面积 腺癌 一致性(知识库) 放射科 核医学 人工智能 内科学 癌症 计算机科学 药代动力学
作者
Jiajing Sun,Li Zhang,Bingyu Hu,Zhicheng Du,William C. Cho,Pasan Witharana,Hua Sun,Dehua Ma,Minhua Ye,Jiajun Chen,Xiaozhuang Wang,Jiancheng Yang,Chengchu Zhu,Jianfei Shen
出处
期刊:Lung Cancer [Elsevier]
卷期号:186: 107392-107392 被引量:3
标识
DOI:10.1016/j.lungcan.2023.107392
摘要

Background The nature of the solid component of subsolid nodules (SSNs) can indicate tumor pathological invasiveness. However, preoperative solid component assessment still lacks a reference standard. Methods In this retrospective study, an AI algorithm was proposed for measuring the solid components ratio in SSNs, which was used to assess the diameter ratio (1D), area ratio (2D), and volume ratio (3D). The radiologist measured each SSN's consolidation to tumor ratio (CTR) twice, four weeks apart. The area under the receiver-operating characteristic (ROC) curve (AUC) was calculated for each method used to discriminate an Invasive Adenocarcinoma (IA) from a non-IA. The AUC and the time cost of each measurement were compared. Furthermore, we examined the consistency of measurements made by the radiologist on two separate occasions. Results A total of 379 patients (the primary dataset n = 278, the validation dataset n = 101) were included. In the primary dataset, compared to the manual approach (AUC: 0.697), the AI algorithm (AUC: 0.811) had better predictive performance (P =.0027) in measuring solid components ratio in 3D. Algorithm measurement in 3D had an AUC no inferior to 1D (AUC: 0.806) and 2D (AUC: 0.796). In the validation dataset, the AI 3D method also achieved superior diagnostic performance compared to the radiologist (AUC: 0.803 vs 0.682, P =.046). The two measurements of the CTR in the primary dataset, taken 4 weeks apart, have 7.9 % cases in poor consistency. The measurement time cost by the radiologist is about 60 times that of the AI algorithm (P <.001). Conclusion The 3D measurement of solid components using AI, is an effective and objective approach to predict the pathological invasiveness of SSNs. It can be a preoperative interpretable indicator of pathological invasiveness in patients with lung adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jj7完成签到,获得积分10
刚刚
1秒前
一叶扁舟发布了新的文献求助10
1秒前
hesongheng发布了新的文献求助10
1秒前
亦屿森发布了新的文献求助10
1秒前
1秒前
嚣张的豆豆完成签到 ,获得积分10
2秒前
化学天空完成签到,获得积分10
4秒前
4秒前
我是老大应助无语大王采纳,获得10
4秒前
完美世界应助谭你脑瓜崩采纳,获得10
6秒前
CipherSage应助里耶熊采纳,获得10
6秒前
天天快乐应助五小采纳,获得10
6秒前
湛刘佳完成签到 ,获得积分10
6秒前
深情安青应助老实的半山采纳,获得10
6秒前
默默书竹发布了新的文献求助10
7秒前
lcx发布了新的文献求助10
7秒前
8秒前
Owen应助科研小企鹅采纳,获得10
8秒前
殊桐完成签到,获得积分10
9秒前
啾啾咪咪发布了新的文献求助10
10秒前
热心灯泡完成签到,获得积分10
13秒前
14秒前
14秒前
华仔应助真实的一鸣采纳,获得10
15秒前
湉湉完成签到,获得积分10
15秒前
山上完成签到,获得积分10
16秒前
16秒前
Singularity应助Yukwah采纳,获得10
17秒前
橘子皮完成签到,获得积分10
17秒前
啾啾咪咪完成签到,获得积分10
17秒前
寒冷的迎梦完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
zhong发布了新的文献求助10
20秒前
莱雅lyre完成签到,获得积分10
21秒前
21秒前
21秒前
Owen应助miqiqi采纳,获得30
22秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046