Deep learning-based solid component measuring enabled interpretable prediction of tumor invasiveness for lung adenocarcinoma

医学 接收机工作特性 曲线下面积 曲线下面积 腺癌 一致性(知识库) 放射科 核医学 人工智能 内科学 癌症 计算机科学 药代动力学
作者
Jiajing Sun,Li Zhang,Bingyu Hu,Zhicheng Du,William C. Cho,Pasan Witharana,Hua Sun,Dehua Ma,Minhua Ye,Jiajun Chen,Xiaozhuang Wang,Jiancheng Yang,Chengchu Zhu,Jianfei Shen
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:186: 107392-107392 被引量:3
标识
DOI:10.1016/j.lungcan.2023.107392
摘要

Background The nature of the solid component of subsolid nodules (SSNs) can indicate tumor pathological invasiveness. However, preoperative solid component assessment still lacks a reference standard. Methods In this retrospective study, an AI algorithm was proposed for measuring the solid components ratio in SSNs, which was used to assess the diameter ratio (1D), area ratio (2D), and volume ratio (3D). The radiologist measured each SSN's consolidation to tumor ratio (CTR) twice, four weeks apart. The area under the receiver-operating characteristic (ROC) curve (AUC) was calculated for each method used to discriminate an Invasive Adenocarcinoma (IA) from a non-IA. The AUC and the time cost of each measurement were compared. Furthermore, we examined the consistency of measurements made by the radiologist on two separate occasions. Results A total of 379 patients (the primary dataset n = 278, the validation dataset n = 101) were included. In the primary dataset, compared to the manual approach (AUC: 0.697), the AI algorithm (AUC: 0.811) had better predictive performance (P =.0027) in measuring solid components ratio in 3D. Algorithm measurement in 3D had an AUC no inferior to 1D (AUC: 0.806) and 2D (AUC: 0.796). In the validation dataset, the AI 3D method also achieved superior diagnostic performance compared to the radiologist (AUC: 0.803 vs 0.682, P =.046). The two measurements of the CTR in the primary dataset, taken 4 weeks apart, have 7.9 % cases in poor consistency. The measurement time cost by the radiologist is about 60 times that of the AI algorithm (P <.001). Conclusion The 3D measurement of solid components using AI, is an effective and objective approach to predict the pathological invasiveness of SSNs. It can be a preoperative interpretable indicator of pathological invasiveness in patients with lung adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇宙中心发布了新的文献求助10
刚刚
YY完成签到,获得积分20
1秒前
羊踯躅发布了新的文献求助10
1秒前
浮游应助1111采纳,获得10
2秒前
天侠客完成签到,获得积分10
2秒前
你是唯一yu完成签到,获得积分10
2秒前
烟花应助简单的冰海采纳,获得10
3秒前
英俊的高跟鞋完成签到,获得积分10
3秒前
3秒前
AAAA10086完成签到 ,获得积分10
3秒前
3秒前
4秒前
boluo20046完成签到,获得积分10
4秒前
4秒前
图灵桑发布了新的文献求助10
4秒前
YXCL完成签到,获得积分10
5秒前
zoe发布了新的文献求助10
5秒前
成长的点滴完成签到,获得积分20
5秒前
5秒前
5秒前
hhhhhh完成签到,获得积分10
6秒前
6秒前
子不语完成签到,获得积分10
6秒前
都是知识点呐完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
小木完成签到,获得积分10
8秒前
LL完成签到,获得积分10
8秒前
共享精神应助王海钰采纳,获得10
8秒前
叮叮完成签到,获得积分10
8秒前
1111完成签到,获得积分20
9秒前
莫小乖发布了新的文献求助50
9秒前
9秒前
默默随阴完成签到 ,获得积分10
9秒前
sagasofmaya完成签到,获得积分10
9秒前
Jieyu完成签到,获得积分10
9秒前
赘婿应助王大京采纳,获得10
9秒前
晓驿完成签到,获得积分10
10秒前
安静果汁完成签到,获得积分10
10秒前
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151452
求助须知:如何正确求助?哪些是违规求助? 4347121
关于积分的说明 13535816
捐赠科研通 4189850
什么是DOI,文献DOI怎么找? 2297713
邀请新用户注册赠送积分活动 1298040
关于科研通互助平台的介绍 1242709