Deep learning-based solid component measuring enabled interpretable prediction of tumor invasiveness for lung adenocarcinoma

医学 接收机工作特性 曲线下面积 曲线下面积 腺癌 一致性(知识库) 放射科 核医学 人工智能 内科学 癌症 计算机科学 药代动力学
作者
Jiajing Sun,Li Zhang,Bingyu Hu,Zhicheng Du,William C. Cho,Pasan Witharana,Hua Sun,Dehua Ma,Minhua Ye,Jiajun Chen,Xiaozhuang Wang,Jiancheng Yang,Chengchu Zhu,Jianfei Shen
出处
期刊:Lung Cancer [Elsevier]
卷期号:186: 107392-107392 被引量:3
标识
DOI:10.1016/j.lungcan.2023.107392
摘要

Background The nature of the solid component of subsolid nodules (SSNs) can indicate tumor pathological invasiveness. However, preoperative solid component assessment still lacks a reference standard. Methods In this retrospective study, an AI algorithm was proposed for measuring the solid components ratio in SSNs, which was used to assess the diameter ratio (1D), area ratio (2D), and volume ratio (3D). The radiologist measured each SSN's consolidation to tumor ratio (CTR) twice, four weeks apart. The area under the receiver-operating characteristic (ROC) curve (AUC) was calculated for each method used to discriminate an Invasive Adenocarcinoma (IA) from a non-IA. The AUC and the time cost of each measurement were compared. Furthermore, we examined the consistency of measurements made by the radiologist on two separate occasions. Results A total of 379 patients (the primary dataset n = 278, the validation dataset n = 101) were included. In the primary dataset, compared to the manual approach (AUC: 0.697), the AI algorithm (AUC: 0.811) had better predictive performance (P =.0027) in measuring solid components ratio in 3D. Algorithm measurement in 3D had an AUC no inferior to 1D (AUC: 0.806) and 2D (AUC: 0.796). In the validation dataset, the AI 3D method also achieved superior diagnostic performance compared to the radiologist (AUC: 0.803 vs 0.682, P =.046). The two measurements of the CTR in the primary dataset, taken 4 weeks apart, have 7.9 % cases in poor consistency. The measurement time cost by the radiologist is about 60 times that of the AI algorithm (P <.001). Conclusion The 3D measurement of solid components using AI, is an effective and objective approach to predict the pathological invasiveness of SSNs. It can be a preoperative interpretable indicator of pathological invasiveness in patients with lung adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tim发布了新的文献求助10
1秒前
赘婿应助ebby采纳,获得10
1秒前
3秒前
红烧肉耶完成签到 ,获得积分10
3秒前
时光悠应助中中中中中采纳,获得30
4秒前
xxfsx应助李思雨采纳,获得10
5秒前
小蘑菇应助啦啦啦啦啦采纳,获得10
5秒前
env发布了新的文献求助30
8秒前
sxmt123456789发布了新的文献求助10
8秒前
Oatmeal5888完成签到,获得积分10
8秒前
冷酷的松思完成签到,获得积分10
9秒前
11秒前
12秒前
真白硝子完成签到,获得积分10
13秒前
14秒前
ebby发布了新的文献求助10
14秒前
15秒前
16秒前
17秒前
Owen应助joysa采纳,获得10
18秒前
格桑花完成签到,获得积分10
18秒前
20秒前
星辰大海应助山水采纳,获得10
21秒前
env完成签到,获得积分10
22秒前
22秒前
ll完成签到 ,获得积分10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
迷路的煎蛋完成签到,获得积分10
24秒前
小杭76应助科研通管家采纳,获得10
24秒前
小马甲应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304