Deep learning-based solid component measuring enabled interpretable prediction of tumor invasiveness for lung adenocarcinoma

医学 接收机工作特性 曲线下面积 曲线下面积 腺癌 一致性(知识库) 放射科 核医学 人工智能 内科学 癌症 计算机科学 药代动力学
作者
Jiajing Sun,Li Zhang,Bingyu Hu,Zhicheng Du,William C. Cho,Pasan Witharana,Hua Sun,Dehua Ma,Minhua Ye,Jiajun Chen,Xiaozhuang Wang,Jiancheng Yang,Chengchu Zhu,Jianfei Shen
出处
期刊:Lung Cancer [Elsevier]
卷期号:186: 107392-107392 被引量:3
标识
DOI:10.1016/j.lungcan.2023.107392
摘要

Background The nature of the solid component of subsolid nodules (SSNs) can indicate tumor pathological invasiveness. However, preoperative solid component assessment still lacks a reference standard. Methods In this retrospective study, an AI algorithm was proposed for measuring the solid components ratio in SSNs, which was used to assess the diameter ratio (1D), area ratio (2D), and volume ratio (3D). The radiologist measured each SSN's consolidation to tumor ratio (CTR) twice, four weeks apart. The area under the receiver-operating characteristic (ROC) curve (AUC) was calculated for each method used to discriminate an Invasive Adenocarcinoma (IA) from a non-IA. The AUC and the time cost of each measurement were compared. Furthermore, we examined the consistency of measurements made by the radiologist on two separate occasions. Results A total of 379 patients (the primary dataset n = 278, the validation dataset n = 101) were included. In the primary dataset, compared to the manual approach (AUC: 0.697), the AI algorithm (AUC: 0.811) had better predictive performance (P =.0027) in measuring solid components ratio in 3D. Algorithm measurement in 3D had an AUC no inferior to 1D (AUC: 0.806) and 2D (AUC: 0.796). In the validation dataset, the AI 3D method also achieved superior diagnostic performance compared to the radiologist (AUC: 0.803 vs 0.682, P =.046). The two measurements of the CTR in the primary dataset, taken 4 weeks apart, have 7.9 % cases in poor consistency. The measurement time cost by the radiologist is about 60 times that of the AI algorithm (P <.001). Conclusion The 3D measurement of solid components using AI, is an effective and objective approach to predict the pathological invasiveness of SSNs. It can be a preoperative interpretable indicator of pathological invasiveness in patients with lung adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zry发布了新的文献求助10
刚刚
AliselyChen发布了新的文献求助10
1秒前
279发布了新的文献求助10
1秒前
shuo0976发布了新的文献求助10
1秒前
2秒前
暮歌发布了新的文献求助10
2秒前
3秒前
4444完成签到,获得积分10
3秒前
4秒前
缓慢的芸遥完成签到 ,获得积分10
4秒前
5秒前
张弓完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
7秒前
邹万恶发布了新的文献求助10
8秒前
spock完成签到,获得积分10
8秒前
luoribai发布了新的文献求助10
8秒前
碎花晚完成签到 ,获得积分10
9秒前
wuyisha完成签到,获得积分10
10秒前
朋克发布了新的文献求助10
10秒前
11秒前
CodeCraft应助文静修杰采纳,获得10
11秒前
12秒前
orixero应助Meng采纳,获得10
12秒前
野与荷完成签到,获得积分10
13秒前
风中的新竹完成签到,获得积分10
13秒前
奋斗的苹果完成签到,获得积分10
13秒前
邹万恶完成签到,获得积分10
14秒前
279完成签到,获得积分10
14秒前
jiangcai完成签到,获得积分10
14秒前
约定看星星啊完成签到,获得积分10
14秒前
14秒前
脑洞疼应助唐唐的猫咪采纳,获得10
15秒前
zry完成签到,获得积分20
15秒前
来杯拿铁完成签到,获得积分10
16秒前
凶狠的映易完成签到 ,获得积分10
16秒前
16秒前
阿丽阿丽完成签到,获得积分10
16秒前
16秒前
灰灰完成签到,获得积分10
18秒前
nkmenghan完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352537
求助须知:如何正确求助?哪些是违规求助? 4485363
关于积分的说明 13962944
捐赠科研通 4385316
什么是DOI,文献DOI怎么找? 2409378
邀请新用户注册赠送积分活动 1401795
关于科研通互助平台的介绍 1375406