清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning-based solid component measuring enabled interpretable prediction of tumor invasiveness for lung adenocarcinoma

医学 接收机工作特性 曲线下面积 曲线下面积 腺癌 一致性(知识库) 放射科 核医学 人工智能 内科学 癌症 计算机科学 药代动力学
作者
Jiajing Sun,Li Zhang,Bingyu Hu,Zhicheng Du,William C. Cho,Pasan Witharana,Hua Sun,Dehua Ma,Minhua Ye,Jiajun Chen,Xiaozhuang Wang,Jiancheng Yang,Chengchu Zhu,Jianfei Shen
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:186: 107392-107392 被引量:3
标识
DOI:10.1016/j.lungcan.2023.107392
摘要

Background The nature of the solid component of subsolid nodules (SSNs) can indicate tumor pathological invasiveness. However, preoperative solid component assessment still lacks a reference standard. Methods In this retrospective study, an AI algorithm was proposed for measuring the solid components ratio in SSNs, which was used to assess the diameter ratio (1D), area ratio (2D), and volume ratio (3D). The radiologist measured each SSN's consolidation to tumor ratio (CTR) twice, four weeks apart. The area under the receiver-operating characteristic (ROC) curve (AUC) was calculated for each method used to discriminate an Invasive Adenocarcinoma (IA) from a non-IA. The AUC and the time cost of each measurement were compared. Furthermore, we examined the consistency of measurements made by the radiologist on two separate occasions. Results A total of 379 patients (the primary dataset n = 278, the validation dataset n = 101) were included. In the primary dataset, compared to the manual approach (AUC: 0.697), the AI algorithm (AUC: 0.811) had better predictive performance (P =.0027) in measuring solid components ratio in 3D. Algorithm measurement in 3D had an AUC no inferior to 1D (AUC: 0.806) and 2D (AUC: 0.796). In the validation dataset, the AI 3D method also achieved superior diagnostic performance compared to the radiologist (AUC: 0.803 vs 0.682, P =.046). The two measurements of the CTR in the primary dataset, taken 4 weeks apart, have 7.9 % cases in poor consistency. The measurement time cost by the radiologist is about 60 times that of the AI algorithm (P <.001). Conclusion The 3D measurement of solid components using AI, is an effective and objective approach to predict the pathological invasiveness of SSNs. It can be a preoperative interpretable indicator of pathological invasiveness in patients with lung adenocarcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助ceeray23采纳,获得20
8秒前
Owen应助吸尘器采纳,获得30
42秒前
故意的冰淇淋完成签到 ,获得积分10
1分钟前
子凡完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
胡国伦完成签到 ,获得积分10
1分钟前
wanci应助学术混子采纳,获得10
2分钟前
2分钟前
学术混子发布了新的文献求助10
2分钟前
田様应助学术混子采纳,获得10
2分钟前
2分钟前
3分钟前
jlwang完成签到,获得积分10
3分钟前
tty应助科研通管家采纳,获得20
3分钟前
学术混子发布了新的文献求助10
3分钟前
cadcae完成签到,获得积分10
3分钟前
点点完成签到 ,获得积分10
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
NexusExplorer应助Amber采纳,获得10
4分钟前
我是老大应助学术混子采纳,获得10
4分钟前
4分钟前
向日葵发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
学术混子发布了新的文献求助10
4分钟前
4分钟前
Amber发布了新的文献求助10
4分钟前
学术混子完成签到,获得积分10
4分钟前
4分钟前
冷静的小虾米完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
Virtual应助科研通管家采纳,获得20
5分钟前
tty应助科研通管家采纳,获得10
5分钟前
虚心蜗牛完成签到 ,获得积分10
5分钟前
NexusExplorer应助jerry采纳,获得10
5分钟前
5分钟前
披着羊皮的狼完成签到 ,获得积分10
5分钟前
5分钟前
jerry完成签到,获得积分10
5分钟前
jerry发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612450
求助须知:如何正确求助?哪些是违规求助? 4017654
关于积分的说明 12436550
捐赠科研通 3699814
什么是DOI,文献DOI怎么找? 2040322
邀请新用户注册赠送积分活动 1073137
科研通“疑难数据库(出版商)”最低求助积分说明 956861