清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography

医学 队列 无线电技术 接收机工作特性 置信区间 逻辑回归 曲线下面积 放射科 核医学 内科学
作者
Guanchao Ye,Guangyao Wu,Kuo Li,Chi Zhang,Yuzhou Zhuang,Hong Liu,Enmin Song,Yu Qi,Yiying Li,Fan Yang,Yongde Liao
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (4): 1686-1697 被引量:4
标识
DOI:10.1016/j.acra.2023.08.040
摘要

Rationale and Objectives To accurately identify the high-risk pathological factors of pulmonary nodules, our study constructed a model combined with clinical features, radiomics features, and deep transfer learning features to predict high-risk pathological pulmonary nodules. Materials and Methods The study cohort consisted of 469 cases of lung adenocarcinoma patients, divided into a training cohort (n = 400) and an external validation cohort (n = 69). We obtained computed tomography (CT) semantic features and clinical characteristics, as well as extracted radiomics and deep transfer learning (DTL) features from the CT images. Selected features were used for constructing prediction models using the logistic regression (LR) algorithm. The performance of the models was evaluated through metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. Results The clinical model achieved an AUC of 0.774 (95% CI: 0.728–0.821) in the training cohort and 0.762 (95% confidence interval [CI]: 0.650–0.873) in the external validation cohort. The radiomics model demonstrated an AUC of 0.847 (95% CI: 0.810–0.884) in the training cohort and 0.800 (95% CI: 0.693–0.907) in the external validation cohort. The radiomics-DTL (Rad-DTL) model showed an AUC of 0.871 (95% CI: 0.838–0.905) in the training cohort and 0.806 (95% CI: 0.698–0.914) in the external validation cohort. The proposed combined model yielded AUC values of 0.872 and 0.814 in the training and external validation cohorts, respectively. The combined model demonstrated superiority over both the clinical model and the Rad-DTL model. There were no statistically significant differences observed in the comparison between the combined model incorporating clinical features and the Rad-DTL model. Decision curve analysis (DCA) indicated that the models provided a net benefit in predicting high-risk pathologic pulmonary nodules. Conclusion Rad-DTL signature is a potential biomarker for predicting high-risk pathologic pulmonary nodules using preoperative CT, determining the appropriate surgical strategy, and guiding the extent of resection. To accurately identify the high-risk pathological factors of pulmonary nodules, our study constructed a model combined with clinical features, radiomics features, and deep transfer learning features to predict high-risk pathological pulmonary nodules. The study cohort consisted of 469 cases of lung adenocarcinoma patients, divided into a training cohort (n = 400) and an external validation cohort (n = 69). We obtained computed tomography (CT) semantic features and clinical characteristics, as well as extracted radiomics and deep transfer learning (DTL) features from the CT images. Selected features were used for constructing prediction models using the logistic regression (LR) algorithm. The performance of the models was evaluated through metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. The clinical model achieved an AUC of 0.774 (95% CI: 0.728–0.821) in the training cohort and 0.762 (95% confidence interval [CI]: 0.650–0.873) in the external validation cohort. The radiomics model demonstrated an AUC of 0.847 (95% CI: 0.810–0.884) in the training cohort and 0.800 (95% CI: 0.693–0.907) in the external validation cohort. The radiomics-DTL (Rad-DTL) model showed an AUC of 0.871 (95% CI: 0.838–0.905) in the training cohort and 0.806 (95% CI: 0.698–0.914) in the external validation cohort. The proposed combined model yielded AUC values of 0.872 and 0.814 in the training and external validation cohorts, respectively. The combined model demonstrated superiority over both the clinical model and the Rad-DTL model. There were no statistically significant differences observed in the comparison between the combined model incorporating clinical features and the Rad-DTL model. Decision curve analysis (DCA) indicated that the models provided a net benefit in predicting high-risk pathologic pulmonary nodules. Rad-DTL signature is a potential biomarker for predicting high-risk pathologic pulmonary nodules using preoperative CT, determining the appropriate surgical strategy, and guiding the extent of resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangye完成签到 ,获得积分10
5秒前
30秒前
Amadeus发布了新的文献求助10
33秒前
Amadeus完成签到,获得积分10
39秒前
实力不允许完成签到 ,获得积分10
46秒前
1分钟前
ww完成签到,获得积分10
1分钟前
波里舞完成签到 ,获得积分10
2分钟前
2分钟前
郑先生完成签到 ,获得积分10
2分钟前
科研通AI2S应助lilili采纳,获得10
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
lilili发布了新的文献求助10
3分钟前
3分钟前
今天又来搬砖啦完成签到,获得积分10
5分钟前
川藏客完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
蔡俊辉发布了新的文献求助10
6分钟前
6分钟前
Eri_SCI完成签到 ,获得积分10
6分钟前
6分钟前
8R60d8应助付怀松采纳,获得10
7分钟前
mzhang2完成签到 ,获得积分10
8分钟前
zai完成签到 ,获得积分10
8分钟前
8分钟前
hugeyoung发布了新的文献求助10
8分钟前
hugeyoung完成签到,获得积分10
9分钟前
红箭烟雨完成签到,获得积分10
9分钟前
10分钟前
wy发布了新的文献求助10
10分钟前
脑洞疼应助qdlsc采纳,获得10
10分钟前
10分钟前
wy完成签到,获得积分10
10分钟前
qdlsc发布了新的文献求助10
10分钟前
小白完成签到 ,获得积分10
10分钟前
11分钟前
沙海沉戈完成签到,获得积分0
12分钟前
12分钟前
Kumquat发布了新的文献求助10
13分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142805
求助须知:如何正确求助?哪些是违规求助? 2793651
关于积分的说明 7807147
捐赠科研通 2449931
什么是DOI,文献DOI怎么找? 1303553
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350