Improving Prediction of GNSS Satellite Visibility in Urban Canyon Based on Graph Transformer

计算机科学 全球导航卫星系统应用 多径传播 人工神经网络 人工智能 卫星 实时计算 电信 全球定位系统 频道(广播) 工程类 航空航天工程
作者
Shaolong Zheng,Zhenni Li,Qianming Wang,Kan Xie,Ming Liu,Shengli Xie,Marios M. Polycarpou
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 被引量:1
标识
DOI:10.33012/2023.19346
摘要

Signals from global navigation satellite systems (GNSS) suffer from serious multipath errors in urban areas caused by building blockages and reflections. The use of deep neural networks offer great potential for predicting and eliminating complex multipath/non-line-of-sight (NLOS) errors. However, existing methods for predicting the original signals face two remaining challenges. The first is the inability to exploit effectively the irregular GNSS dataset because of inconsistent numbers of visible satellites in different epochs. The second is degradation in the generalization performance of the multipath/NLOS prediction model when using data collected from different locations and periods. To address these challenges, this paper proposes a novel graph transformer neural network for predicting satellite visibility that effectively learns environment representations from the irregular GNSS measurements to both alleviate multipath interference and improve the generalization performance of the multipath prediction model. To learn from the irregular GNSS measurements, a sky satellite graph is constructed as the input to a graph neural network by using the satellites captured in the same epoch, which can represent the spatial relationships between the satellites and enhance the model to enable learning of satellite-related features sufficiently well. To improve generalization ability of our multipath prediction model, a multihead attention mechanism is introduced to aggregate satellite node information by computing the correlation between satellites for extracting the environment representation around the receiver. Based on the constructed sky satellite graph and the multihead attention mechanism, we develop a novel graph transformer neural network (GTNN) for predicting satellite visibility, which can not only handle irregular GNSS measurements but also learn an environment representation via graph attention. Comparative experiments were carried out on real-world GNSS measurement data in urban areas, which showed that the proposed method could achieve an accuracy exceeding 96% for satellite visibility prediction and obtain better generalization performance than existing multipath prediction methods. Moreover, the attention weights among the satellites were visualized to demonstrate the environment representation learned by the GTNN from the sky satellite graph.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XylonYu完成签到,获得积分10
1秒前
华仔应助碧蓝碧凡采纳,获得10
2秒前
3秒前
超勍发布了新的文献求助10
7秒前
小马甲应助yuanshl1985采纳,获得10
7秒前
zhuxiaonian完成签到,获得积分10
10秒前
田様应助淘气科研采纳,获得10
10秒前
chenyi完成签到,获得积分10
11秒前
zyyyy完成签到,获得积分10
11秒前
奶黄包完成签到 ,获得积分10
11秒前
SYLH应助海阔天空采纳,获得10
11秒前
11秒前
机灵又蓝完成签到,获得积分10
12秒前
张土豆完成签到 ,获得积分10
12秒前
善学以致用应助小王采纳,获得10
12秒前
orang完成签到,获得积分10
13秒前
巧巧艾完成签到,获得积分10
13秒前
14秒前
邵洋完成签到,获得积分10
14秒前
sl发布了新的文献求助10
14秒前
15秒前
小迪迦奥特曼完成签到,获得积分10
15秒前
15秒前
cckk发布了新的文献求助10
16秒前
夏目由美完成签到 ,获得积分10
16秒前
Jasper应助哦哦哦采纳,获得10
17秒前
YYD完成签到,获得积分10
17秒前
超勍完成签到,获得积分10
17秒前
碧蓝碧凡发布了新的文献求助10
18秒前
Popeye应助鹤鸣采纳,获得30
18秒前
YYD发布了新的文献求助10
19秒前
yuanshl1985发布了新的文献求助10
19秒前
积极的黑猫完成签到,获得积分10
20秒前
GB完成签到 ,获得积分10
20秒前
Metx完成签到 ,获得积分10
21秒前
孤独的涔完成签到,获得积分10
22秒前
Jay完成签到,获得积分10
22秒前
23秒前
深情安青应助hf采纳,获得10
25秒前
学不懂数学应助大观天下采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029