Improving Prediction of GNSS Satellite Visibility in Urban Canyon Based on Graph Transformer

计算机科学 全球导航卫星系统应用 多径传播 人工神经网络 人工智能 卫星 实时计算 电信 全球定位系统 频道(广播) 工程类 航空航天工程
作者
Shaolong Zheng,Zhenni Li,Qianming Wang,Kan Xie,Ming Liu,Shengli Xie,Marios M. Polycarpou
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 被引量:1
标识
DOI:10.33012/2023.19346
摘要

Signals from global navigation satellite systems (GNSS) suffer from serious multipath errors in urban areas caused by building blockages and reflections. The use of deep neural networks offer great potential for predicting and eliminating complex multipath/non-line-of-sight (NLOS) errors. However, existing methods for predicting the original signals face two remaining challenges. The first is the inability to exploit effectively the irregular GNSS dataset because of inconsistent numbers of visible satellites in different epochs. The second is degradation in the generalization performance of the multipath/NLOS prediction model when using data collected from different locations and periods. To address these challenges, this paper proposes a novel graph transformer neural network for predicting satellite visibility that effectively learns environment representations from the irregular GNSS measurements to both alleviate multipath interference and improve the generalization performance of the multipath prediction model. To learn from the irregular GNSS measurements, a sky satellite graph is constructed as the input to a graph neural network by using the satellites captured in the same epoch, which can represent the spatial relationships between the satellites and enhance the model to enable learning of satellite-related features sufficiently well. To improve generalization ability of our multipath prediction model, a multihead attention mechanism is introduced to aggregate satellite node information by computing the correlation between satellites for extracting the environment representation around the receiver. Based on the constructed sky satellite graph and the multihead attention mechanism, we develop a novel graph transformer neural network (GTNN) for predicting satellite visibility, which can not only handle irregular GNSS measurements but also learn an environment representation via graph attention. Comparative experiments were carried out on real-world GNSS measurement data in urban areas, which showed that the proposed method could achieve an accuracy exceeding 96% for satellite visibility prediction and obtain better generalization performance than existing multipath prediction methods. Moreover, the attention weights among the satellites were visualized to demonstrate the environment representation learned by the GTNN from the sky satellite graph.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助zhikaiyici采纳,获得20
1秒前
fqh完成签到,获得积分20
1秒前
夏夏夏完成签到,获得积分10
2秒前
wj发布了新的文献求助10
3秒前
传奇3应助合适依秋采纳,获得10
3秒前
3秒前
缪尹盛完成签到,获得积分10
4秒前
白竹完成签到 ,获得积分10
6秒前
7秒前
MOS发布了新的文献求助150
7秒前
18-Crown-6完成签到 ,获得积分10
9秒前
马大翔应助开开SWAG采纳,获得10
11秒前
11秒前
顺顺欣发布了新的文献求助30
12秒前
13秒前
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
genomed应助科研通管家采纳,获得20
13秒前
大个应助科研通管家采纳,获得10
13秒前
13秒前
houchengru发布了新的文献求助10
14秒前
打屁飞完成签到,获得积分10
14秒前
牛马人生发布了新的文献求助10
16秒前
quan完成签到,获得积分10
17秒前
lxj发布了新的文献求助10
18秒前
纯情的砖家完成签到,获得积分10
18秒前
彭于晏应助ssk采纳,获得10
22秒前
liumu完成签到 ,获得积分10
23秒前
田様应助李昕123采纳,获得10
24秒前
wking应助丙子哥采纳,获得10
25秒前
能干花瓣完成签到,获得积分10
25秒前
醉舞烟罗完成签到,获得积分10
26秒前
27秒前
Yn完成签到 ,获得积分10
27秒前
后知后觉完成签到,获得积分10
29秒前
32秒前
36秒前
研友_VZG7GZ应助hwezhu采纳,获得10
36秒前
37秒前
37秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122853
求助须知:如何正确求助?哪些是违规求助? 2773205
关于积分的说明 7716973
捐赠科研通 2428741
什么是DOI,文献DOI怎么找? 1289978
科研通“疑难数据库(出版商)”最低求助积分说明 621678
版权声明 600188