Improving Prediction of GNSS Satellite Visibility in Urban Canyon Based on Graph Transformer

计算机科学 全球导航卫星系统应用 多径传播 人工神经网络 人工智能 卫星 实时计算 电信 全球定位系统 频道(广播) 工程类 航空航天工程
作者
Shaolong Zheng,Zhenni Li,Qianming Wang,Kan Xie,Ming Liu,Shengli Xie,Marios M. Polycarpou
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 被引量:1
标识
DOI:10.33012/2023.19346
摘要

Signals from global navigation satellite systems (GNSS) suffer from serious multipath errors in urban areas caused by building blockages and reflections. The use of deep neural networks offer great potential for predicting and eliminating complex multipath/non-line-of-sight (NLOS) errors. However, existing methods for predicting the original signals face two remaining challenges. The first is the inability to exploit effectively the irregular GNSS dataset because of inconsistent numbers of visible satellites in different epochs. The second is degradation in the generalization performance of the multipath/NLOS prediction model when using data collected from different locations and periods. To address these challenges, this paper proposes a novel graph transformer neural network for predicting satellite visibility that effectively learns environment representations from the irregular GNSS measurements to both alleviate multipath interference and improve the generalization performance of the multipath prediction model. To learn from the irregular GNSS measurements, a sky satellite graph is constructed as the input to a graph neural network by using the satellites captured in the same epoch, which can represent the spatial relationships between the satellites and enhance the model to enable learning of satellite-related features sufficiently well. To improve generalization ability of our multipath prediction model, a multihead attention mechanism is introduced to aggregate satellite node information by computing the correlation between satellites for extracting the environment representation around the receiver. Based on the constructed sky satellite graph and the multihead attention mechanism, we develop a novel graph transformer neural network (GTNN) for predicting satellite visibility, which can not only handle irregular GNSS measurements but also learn an environment representation via graph attention. Comparative experiments were carried out on real-world GNSS measurement data in urban areas, which showed that the proposed method could achieve an accuracy exceeding 96% for satellite visibility prediction and obtain better generalization performance than existing multipath prediction methods. Moreover, the attention weights among the satellites were visualized to demonstrate the environment representation learned by the GTNN from the sky satellite graph.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
坚果发布了新的文献求助10
2秒前
Akim应助成功采纳,获得10
3秒前
小名余土土完成签到 ,获得积分10
4秒前
4秒前
huayi发布了新的文献求助10
5秒前
8秒前
8秒前
U9A发布了新的文献求助10
8秒前
小琰砸完成签到,获得积分10
8秒前
Anthony发布了新的文献求助10
9秒前
123444发布了新的文献求助10
9秒前
懵懂的海露完成签到,获得积分10
10秒前
10秒前
13秒前
Jane发布了新的文献求助10
13秒前
BING发布了新的文献求助10
14秒前
14秒前
小丿丫丿丫完成签到 ,获得积分10
15秒前
kkkkedy完成签到,获得积分20
16秒前
16秒前
17秒前
伊斯坦布尔的鱼应助123444采纳,获得10
17秒前
Liu应助重要的奇异果采纳,获得30
18秒前
19秒前
就叫十一吧完成签到,获得积分10
21秒前
21秒前
亚麻灰色发布了新的文献求助10
21秒前
21秒前
Allenlee发布了新的文献求助10
22秒前
water应助wang采纳,获得10
22秒前
扎心发布了新的文献求助10
22秒前
怡然诗霜完成签到,获得积分10
23秒前
23秒前
CR7应助冉柒采纳,获得20
25秒前
25秒前
CodeCraft应助七七采纳,获得10
25秒前
小人物完成签到,获得积分10
26秒前
思源应助Zzddslj采纳,获得10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971775
求助须知:如何正确求助?哪些是违规求助? 3516416
关于积分的说明 11182625
捐赠科研通 3251629
什么是DOI,文献DOI怎么找? 1796019
邀请新用户注册赠送积分活动 876216
科研通“疑难数据库(出版商)”最低求助积分说明 805358