亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Prediction of GNSS Satellite Visibility in Urban Canyon Based on Graph Transformer

计算机科学 全球导航卫星系统应用 多径传播 人工神经网络 人工智能 卫星 实时计算 电信 全球定位系统 频道(广播) 工程类 航空航天工程
作者
Shaolong Zheng,Zhenni Li,Qianming Wang,Kan Xie,Ming Liu,Shengli Xie,Marios M. Polycarpou
出处
期刊:Proceedings of the Satellite Division's International Technical Meeting 被引量:1
标识
DOI:10.33012/2023.19346
摘要

Signals from global navigation satellite systems (GNSS) suffer from serious multipath errors in urban areas caused by building blockages and reflections. The use of deep neural networks offer great potential for predicting and eliminating complex multipath/non-line-of-sight (NLOS) errors. However, existing methods for predicting the original signals face two remaining challenges. The first is the inability to exploit effectively the irregular GNSS dataset because of inconsistent numbers of visible satellites in different epochs. The second is degradation in the generalization performance of the multipath/NLOS prediction model when using data collected from different locations and periods. To address these challenges, this paper proposes a novel graph transformer neural network for predicting satellite visibility that effectively learns environment representations from the irregular GNSS measurements to both alleviate multipath interference and improve the generalization performance of the multipath prediction model. To learn from the irregular GNSS measurements, a sky satellite graph is constructed as the input to a graph neural network by using the satellites captured in the same epoch, which can represent the spatial relationships between the satellites and enhance the model to enable learning of satellite-related features sufficiently well. To improve generalization ability of our multipath prediction model, a multihead attention mechanism is introduced to aggregate satellite node information by computing the correlation between satellites for extracting the environment representation around the receiver. Based on the constructed sky satellite graph and the multihead attention mechanism, we develop a novel graph transformer neural network (GTNN) for predicting satellite visibility, which can not only handle irregular GNSS measurements but also learn an environment representation via graph attention. Comparative experiments were carried out on real-world GNSS measurement data in urban areas, which showed that the proposed method could achieve an accuracy exceeding 96% for satellite visibility prediction and obtain better generalization performance than existing multipath prediction methods. Moreover, the attention weights among the satellites were visualized to demonstrate the environment representation learned by the GTNN from the sky satellite graph.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qazwsx应助Sandy采纳,获得30
3秒前
贺临完成签到 ,获得积分10
4秒前
爆米花应助花凉采纳,获得10
18秒前
19秒前
23秒前
Yuanyuan发布了新的文献求助10
26秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
44秒前
46秒前
Hayward完成签到,获得积分10
52秒前
53秒前
花凉发布了新的文献求助10
59秒前
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
专注的问寒应助ceeray23采纳,获得50
1分钟前
1分钟前
Mufreh完成签到,获得积分10
1分钟前
核桃应助ceeray23采纳,获得20
2分钟前
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
潘Pdm发布了新的文献求助10
2分钟前
2分钟前
无花果应助Marshall采纳,获得10
3分钟前
3分钟前
3分钟前
Marshall发布了新的文献求助10
3分钟前
幸运星完成签到 ,获得积分10
3分钟前
木木发布了新的文献求助10
3分钟前
3分钟前
甜甜纸飞机完成签到 ,获得积分10
3分钟前
3分钟前
甜甜的紫菜完成签到 ,获得积分10
3分钟前
3分钟前
安静的yu完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788741
求助须知:如何正确求助?哪些是违规求助? 5711548
关于积分的说明 15473875
捐赠科研通 4916750
什么是DOI,文献DOI怎么找? 2646551
邀请新用户注册赠送积分活动 1594225
关于科研通互助平台的介绍 1548651