已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reciprocal Human-Machine Learning: A Theory and an Instantiation for the Case of Message Classification

计算机科学 人工智能 背景(考古学) 机器学习 互惠的 领域(数学分析) 数学 语言学 生物 数学分析 哲学 古生物学
作者
Dov Te’eni,Inbal Yahav,Alexely Zagalsky,David G. Schwartz,Gahl Silverman,Daniel Cohen,Yossi Mann,Dafna Lewinsky
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:14
标识
DOI:10.1287/mnsc.2022.03518
摘要

There is growing agreement among researchers and developers that in certain machine-learning (ML) tasks, it may be advantageous to keep a “human in the loop” rather than rely on fully autonomous systems. Continual human involvement can mitigate machine bias and performance deterioration while enabling humans to continue learning from insights derived by ML. Yet a microlevel theory that effectively facilitates joint and continual learning in both humans and machines is still lacking. To address this need, we adopt a design science approach and build on theories of human reciprocal learning to develop an abstract configuration for reciprocal human-ML (RHML) in the context of text message classification. This configuration supports learning cycles between humans and machines who repeatedly exchange feedback regarding a classification task and adjust their knowledge representations accordingly. Our configuration is instantiated in Fusion, a novel technology artifact. Fusion is developed iteratively in two case studies of cybersecurity forums (drug trafficking and hacker attacks), in which domain experts and ML models jointly learn to classify textual messages. In the final stage, we conducted two experiments of the RHML configuration to gauge both human and machine learning processes over eight learning cycles. Generalizing our insights, we provide formal design principles for the development of systems to support RHML. This paper was accepted by D. J. Wu, special issue on the human-algorithm connection. Funding: This work was supported by the Israel’s Ministry of Defence [Grant R4441197567] and the Israel’s Ministry of Science and Technology [Grant 207076]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.03518 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助euy采纳,获得10
2秒前
光之战士完成签到 ,获得积分10
4秒前
Hello应助hibiwi采纳,获得20
5秒前
Divine发布了新的文献求助10
5秒前
细心天德完成签到 ,获得积分10
7秒前
科研通AI2S应助维夏十一采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
12秒前
CUT应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
Heeyeon发布了新的文献求助10
13秒前
Divine完成签到,获得积分10
13秒前
小白发布了新的文献求助30
14秒前
张zz完成签到 ,获得积分10
15秒前
15秒前
18秒前
星辰大海应助紫苑采纳,获得20
19秒前
Nakjeong完成签到 ,获得积分10
20秒前
dragonhmw完成签到 ,获得积分10
20秒前
维夏十一发布了新的文献求助10
20秒前
LTJ完成签到,获得积分10
22秒前
23秒前
顽主完成签到,获得积分10
23秒前
24秒前
26秒前
26秒前
GlockieZhao完成签到,获得积分10
26秒前
Kevin完成签到,获得积分10
26秒前
Jasper应助爱lx采纳,获得10
27秒前
婷婷发布了新的文献求助30
29秒前
万能图书馆应助麻生采纳,获得10
31秒前
紫苑发布了新的文献求助20
31秒前
kdjm688完成签到,获得积分10
31秒前
wyz完成签到 ,获得积分10
32秒前
hailicy发布了新的文献求助10
32秒前
丁丁完成签到 ,获得积分10
33秒前
yuling完成签到,获得积分10
33秒前
陈腿毛完成签到,获得积分10
36秒前
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307193
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499766
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428732
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382