Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors

分割 计算机科学 人工智能 胰腺 模式识别(心理学) 特征(语言学) 精确性和召回率 计算机视觉 医学 内科学 语言学 哲学
作者
Lingfeng Cao,Jianwei Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105562-105562
标识
DOI:10.1016/j.bspc.2023.105562
摘要

Accurate and reliable segmentation of the pancreas and its lesions on computed tomography (CT) images is crucial in medical imaging for preoperative diagnosis, surgical planning, and postoperative monitoring. However, there are limited studies that address simultaneous segmentation of the pancreas and pancreatic tumors. Moreover, existing studies have not fully utilized the feature potential of the original images and have neglected the exploration of semantic information with strong representation. To overcome these limitations, we propose the Strongly Representative Semantic-guided Segmentation Network (SRSNet). Specifically, we employ intermediate semantic information to generate strongly representative high-resolution pre-segmented images, effectively reducing channel redundancy across different resolutions. We utilize various mechanisms to extract distinct representative features, and with the guidance of these features, SRSNet effectively supplements high-resolution detailed information for features of different resolutions, provides auxiliary features for the pixel decision phase of the network, and detects large-scale changes in the pancreas and pancreatic tumors. Additionally, we design a loss function that enhances SRSNet’s sensitivity to boundary pixels and attenuates the effect of class imbalance. Our method is evaluated on Task07 Pancreas and NIH Pancreas datasets. In the experiment of combined pancreas and tumor segmentation in the MSD dataset, we achieved Dice, Recall, Precision, and MIoU scores of 78.60%, 79.64%, 81.72%, and 71.47%, respectively. Extensive experiments demonstrate that our algorithm not only outperforms state-of-the-art algorithms for pancreas segmentation but also exhibits excellent performance for pancreas and pancreatic tumor segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助十公里采纳,获得10
刚刚
Orange应助Forsyl采纳,获得20
1秒前
成绩提高发布了新的文献求助10
2秒前
2秒前
可咳咳咳发布了新的文献求助10
3秒前
4秒前
樊傲云发布了新的文献求助10
6秒前
Ava应助柒八染采纳,获得10
6秒前
小朋友发布了新的文献求助10
6秒前
7秒前
无花果应助fagfagsf采纳,获得10
8秒前
科研的师弟应助虚心十三采纳,获得10
8秒前
门门完成签到,获得积分10
9秒前
可靠雪碧发布了新的文献求助10
10秒前
11秒前
小宝骡完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
薰硝壤应助粥粥爱糊糊采纳,获得10
12秒前
12秒前
12秒前
13秒前
aaao发布了新的文献求助10
13秒前
Qzc完成签到,获得积分10
14秒前
皮卡丘完成签到,获得积分20
15秒前
16秒前
17秒前
传奇3应助斯文的鸣凤采纳,获得10
18秒前
皮卡丘发布了新的文献求助10
18秒前
18秒前
HU发布了新的文献求助10
18秒前
欢呼雍发布了新的文献求助10
19秒前
19秒前
橘子发布了新的文献求助10
19秒前
setmefree发布了新的文献求助10
20秒前
21秒前
好人一生平安完成签到,获得积分10
22秒前
激昂的白凡应助渡劫采纳,获得20
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706