Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors

分割 计算机科学 人工智能 胰腺 模式识别(心理学) 特征(语言学) 精确性和召回率 像素 计算机视觉 医学 内科学 语言学 哲学
作者
Luyang Cao,Jianwei Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105562-105562 被引量:8
标识
DOI:10.1016/j.bspc.2023.105562
摘要

Accurate and reliable segmentation of the pancreas and its lesions on computed tomography (CT) images is crucial in medical imaging for preoperative diagnosis, surgical planning, and postoperative monitoring. However, there are limited studies that address simultaneous segmentation of the pancreas and pancreatic tumors. Moreover, existing studies have not fully utilized the feature potential of the original images and have neglected the exploration of semantic information with strong representation. To overcome these limitations, we propose the Strongly Representative Semantic-guided Segmentation Network (SRSNet). Specifically, we employ intermediate semantic information to generate strongly representative high-resolution pre-segmented images, effectively reducing channel redundancy across different resolutions. We utilize various mechanisms to extract distinct representative features, and with the guidance of these features, SRSNet effectively supplements high-resolution detailed information for features of different resolutions, provides auxiliary features for the pixel decision phase of the network, and detects large-scale changes in the pancreas and pancreatic tumors. Additionally, we design a loss function that enhances SRSNet’s sensitivity to boundary pixels and attenuates the effect of class imbalance. Our method is evaluated on Task07 Pancreas and NIH Pancreas datasets. In the experiment of combined pancreas and tumor segmentation in the MSD dataset, we achieved Dice, Recall, Precision, and MIoU scores of 78.60%, 79.64%, 81.72%, and 71.47%, respectively. Extensive experiments demonstrate that our algorithm not only outperforms state-of-the-art algorithms for pancreas segmentation but also exhibits excellent performance for pancreas and pancreatic tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
药药55发布了新的文献求助10
1秒前
佳佳发布了新的文献求助10
1秒前
3秒前
英姑应助me采纳,获得10
4秒前
6秒前
沐梵完成签到,获得积分10
6秒前
7秒前
开放的千青完成签到,获得积分10
8秒前
ZeKaWang应助春子采纳,获得10
8秒前
8秒前
8秒前
9秒前
共享精神应助xalone采纳,获得10
10秒前
11秒前
xxx关闭了xxx文献求助
12秒前
霸气灰狼发布了新的文献求助10
12秒前
刘浩发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
科研通AI2S应助shinn采纳,获得10
13秒前
aziridine完成签到,获得积分20
13秒前
霸气白卉发布了新的文献求助30
13秒前
科研通AI6应助yqq38采纳,获得10
14秒前
mxxz发布了新的文献求助10
15秒前
15秒前
aziridine发布了新的文献求助10
15秒前
潇潇雨歇发布了新的文献求助10
16秒前
16秒前
NexusExplorer应助刘浩采纳,获得10
17秒前
17秒前
天天快乐应助WQJ采纳,获得10
17秒前
18秒前
18秒前
球球完成签到,获得积分10
18秒前
Akim应助可鹿丽采纳,获得10
18秒前
葱花发布了新的文献求助50
19秒前
白茶关注了科研通微信公众号
20秒前
科研通AI6应助哈哈哈大赞采纳,获得10
20秒前
liuguanfeng发布了新的文献求助10
21秒前
情怀应助tutu采纳,获得30
22秒前
qingmoheng应助shinn采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627161
求助须知:如何正确求助?哪些是违规求助? 4713090
关于积分的说明 14961386
捐赠科研通 4783800
什么是DOI,文献DOI怎么找? 2554728
邀请新用户注册赠送积分活动 1516296
关于科研通互助平台的介绍 1476641