亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors

分割 计算机科学 人工智能 胰腺 模式识别(心理学) 特征(语言学) 精确性和召回率 像素 计算机视觉 医学 内科学 语言学 哲学
作者
Luyang Cao,Jianwei Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105562-105562 被引量:8
标识
DOI:10.1016/j.bspc.2023.105562
摘要

Accurate and reliable segmentation of the pancreas and its lesions on computed tomography (CT) images is crucial in medical imaging for preoperative diagnosis, surgical planning, and postoperative monitoring. However, there are limited studies that address simultaneous segmentation of the pancreas and pancreatic tumors. Moreover, existing studies have not fully utilized the feature potential of the original images and have neglected the exploration of semantic information with strong representation. To overcome these limitations, we propose the Strongly Representative Semantic-guided Segmentation Network (SRSNet). Specifically, we employ intermediate semantic information to generate strongly representative high-resolution pre-segmented images, effectively reducing channel redundancy across different resolutions. We utilize various mechanisms to extract distinct representative features, and with the guidance of these features, SRSNet effectively supplements high-resolution detailed information for features of different resolutions, provides auxiliary features for the pixel decision phase of the network, and detects large-scale changes in the pancreas and pancreatic tumors. Additionally, we design a loss function that enhances SRSNet’s sensitivity to boundary pixels and attenuates the effect of class imbalance. Our method is evaluated on Task07 Pancreas and NIH Pancreas datasets. In the experiment of combined pancreas and tumor segmentation in the MSD dataset, we achieved Dice, Recall, Precision, and MIoU scores of 78.60%, 79.64%, 81.72%, and 71.47%, respectively. Extensive experiments demonstrate that our algorithm not only outperforms state-of-the-art algorithms for pancreas segmentation but also exhibits excellent performance for pancreas and pancreatic tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦追阳完成签到 ,获得积分10
1秒前
lyw发布了新的文献求助10
4秒前
wait完成签到,获得积分20
5秒前
CipherSage应助丽优采纳,获得10
9秒前
16秒前
djy发布了新的文献求助10
22秒前
26秒前
djy完成签到,获得积分10
29秒前
Lewis发布了新的文献求助10
30秒前
昌莆完成签到 ,获得积分10
35秒前
37秒前
天天快乐应助丽优采纳,获得10
42秒前
zmjmj发布了新的文献求助10
43秒前
44秒前
炸鸡叔发布了新的文献求助10
49秒前
搜集达人应助炸鸡叔采纳,获得100
1分钟前
小马甲应助zmjmj采纳,获得10
1分钟前
小马甲应助丽优采纳,获得10
1分钟前
1分钟前
星愿发布了新的文献求助10
1分钟前
1分钟前
coco发布了新的文献求助10
1分钟前
星愿完成签到,获得积分10
1分钟前
Orange应助lyw采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
9527应助科研通管家采纳,获得10
1分钟前
丘比特应助af采纳,获得20
1分钟前
NexusExplorer应助丽优采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
丽优发布了新的文献求助10
2分钟前
丽优发布了新的文献求助10
2分钟前
丽优发布了新的文献求助10
2分钟前
丽优发布了新的文献求助10
2分钟前
丽优发布了新的文献求助10
2分钟前
2分钟前
coco完成签到,获得积分20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426463
求助须知:如何正确求助?哪些是违规求助? 4540214
关于积分的说明 14171846
捐赠科研通 4457975
什么是DOI,文献DOI怎么找? 2444749
邀请新用户注册赠送积分活动 1435805
关于科研通互助平台的介绍 1413245