Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors

分割 计算机科学 人工智能 胰腺 模式识别(心理学) 特征(语言学) 精确性和召回率 像素 计算机视觉 医学 内科学 语言学 哲学
作者
Luyang Cao,Jianwei Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105562-105562 被引量:8
标识
DOI:10.1016/j.bspc.2023.105562
摘要

Accurate and reliable segmentation of the pancreas and its lesions on computed tomography (CT) images is crucial in medical imaging for preoperative diagnosis, surgical planning, and postoperative monitoring. However, there are limited studies that address simultaneous segmentation of the pancreas and pancreatic tumors. Moreover, existing studies have not fully utilized the feature potential of the original images and have neglected the exploration of semantic information with strong representation. To overcome these limitations, we propose the Strongly Representative Semantic-guided Segmentation Network (SRSNet). Specifically, we employ intermediate semantic information to generate strongly representative high-resolution pre-segmented images, effectively reducing channel redundancy across different resolutions. We utilize various mechanisms to extract distinct representative features, and with the guidance of these features, SRSNet effectively supplements high-resolution detailed information for features of different resolutions, provides auxiliary features for the pixel decision phase of the network, and detects large-scale changes in the pancreas and pancreatic tumors. Additionally, we design a loss function that enhances SRSNet’s sensitivity to boundary pixels and attenuates the effect of class imbalance. Our method is evaluated on Task07 Pancreas and NIH Pancreas datasets. In the experiment of combined pancreas and tumor segmentation in the MSD dataset, we achieved Dice, Recall, Precision, and MIoU scores of 78.60%, 79.64%, 81.72%, and 71.47%, respectively. Extensive experiments demonstrate that our algorithm not only outperforms state-of-the-art algorithms for pancreas segmentation but also exhibits excellent performance for pancreas and pancreatic tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Denmark发布了新的文献求助10
1秒前
6666发布了新的文献求助10
1秒前
枫星羽完成签到,获得积分10
4秒前
蓝绝发布了新的文献求助10
4秒前
何必在乎发布了新的文献求助10
4秒前
无花果应助zyl采纳,获得10
5秒前
无花果应助Sherlly采纳,获得10
5秒前
5秒前
5秒前
ding应助迷人雪碧采纳,获得10
6秒前
Yue完成签到,获得积分10
6秒前
6秒前
善良宛筠完成签到,获得积分10
6秒前
李爱国应助大玉124采纳,获得20
7秒前
7秒前
科研通AI6应助吧唧采纳,获得10
8秒前
SciGPT应助Msure采纳,获得10
9秒前
小鱼完成签到,获得积分10
9秒前
10秒前
安详的白云完成签到,获得积分10
10秒前
Ava应助个性的荆采纳,获得10
11秒前
honda完成签到,获得积分10
11秒前
小新完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
mengzhao完成签到,获得积分10
12秒前
动听的笑南完成签到,获得积分10
12秒前
肉包子完成签到,获得积分10
13秒前
13秒前
欢--发布了新的文献求助10
15秒前
大个应助善良宛筠采纳,获得10
15秒前
Man发布了新的文献求助10
16秒前
哒哒哒发布了新的文献求助10
17秒前
fryeia完成签到,获得积分10
17秒前
18秒前
ZZICU完成签到,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798