Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors

分割 计算机科学 人工智能 胰腺 模式识别(心理学) 特征(语言学) 精确性和召回率 像素 计算机视觉 医学 内科学 语言学 哲学
作者
Luyang Cao,Jianwei Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105562-105562 被引量:8
标识
DOI:10.1016/j.bspc.2023.105562
摘要

Accurate and reliable segmentation of the pancreas and its lesions on computed tomography (CT) images is crucial in medical imaging for preoperative diagnosis, surgical planning, and postoperative monitoring. However, there are limited studies that address simultaneous segmentation of the pancreas and pancreatic tumors. Moreover, existing studies have not fully utilized the feature potential of the original images and have neglected the exploration of semantic information with strong representation. To overcome these limitations, we propose the Strongly Representative Semantic-guided Segmentation Network (SRSNet). Specifically, we employ intermediate semantic information to generate strongly representative high-resolution pre-segmented images, effectively reducing channel redundancy across different resolutions. We utilize various mechanisms to extract distinct representative features, and with the guidance of these features, SRSNet effectively supplements high-resolution detailed information for features of different resolutions, provides auxiliary features for the pixel decision phase of the network, and detects large-scale changes in the pancreas and pancreatic tumors. Additionally, we design a loss function that enhances SRSNet’s sensitivity to boundary pixels and attenuates the effect of class imbalance. Our method is evaluated on Task07 Pancreas and NIH Pancreas datasets. In the experiment of combined pancreas and tumor segmentation in the MSD dataset, we achieved Dice, Recall, Precision, and MIoU scores of 78.60%, 79.64%, 81.72%, and 71.47%, respectively. Extensive experiments demonstrate that our algorithm not only outperforms state-of-the-art algorithms for pancreas segmentation but also exhibits excellent performance for pancreas and pancreatic tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伯克利芙蓉王应助周防采纳,获得10
1秒前
曹佳琦发布了新的文献求助10
2秒前
桐桐应助HTB采纳,获得10
3秒前
池鱼关注了科研通微信公众号
3秒前
丘比特应助111采纳,获得10
3秒前
3秒前
D10完成签到,获得积分10
4秒前
路卡利欧发布了新的文献求助10
5秒前
5秒前
7秒前
Ning完成签到,获得积分10
8秒前
浮浮世世发布了新的文献求助10
9秒前
小熊硬唐完成签到,获得积分10
10秒前
liuyingke完成签到,获得积分10
10秒前
Jnest发布了新的文献求助10
10秒前
科研通AI6应助黑马王子采纳,获得10
11秒前
11秒前
12秒前
天天快乐应助贪玩的元彤采纳,获得10
13秒前
13秒前
14秒前
111发布了新的文献求助10
15秒前
阳光冰颜完成签到 ,获得积分10
16秒前
Akim应助Jnest采纳,获得10
16秒前
Mia完成签到,获得积分10
17秒前
高挑的迎丝完成签到,获得积分10
18秒前
HTB发布了新的文献求助10
18秒前
Alex完成签到,获得积分0
18秒前
周防完成签到,获得积分20
19秒前
20秒前
20秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
科研通AI6应助路卡利欧采纳,获得10
25秒前
25秒前
池鱼发布了新的文献求助10
26秒前
琪凯定理发布了新的文献求助20
28秒前
yangYR应助Leon Lai采纳,获得10
29秒前
发呆的小号完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536747
求助须知:如何正确求助?哪些是违规求助? 4624321
关于积分的说明 14591612
捐赠科研通 4564876
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480690
关于科研通互助平台的介绍 1451972