Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors

分割 计算机科学 人工智能 胰腺 模式识别(心理学) 特征(语言学) 精确性和召回率 像素 计算机视觉 医学 内科学 语言学 哲学
作者
Luyang Cao,Jianwei Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105562-105562 被引量:8
标识
DOI:10.1016/j.bspc.2023.105562
摘要

Accurate and reliable segmentation of the pancreas and its lesions on computed tomography (CT) images is crucial in medical imaging for preoperative diagnosis, surgical planning, and postoperative monitoring. However, there are limited studies that address simultaneous segmentation of the pancreas and pancreatic tumors. Moreover, existing studies have not fully utilized the feature potential of the original images and have neglected the exploration of semantic information with strong representation. To overcome these limitations, we propose the Strongly Representative Semantic-guided Segmentation Network (SRSNet). Specifically, we employ intermediate semantic information to generate strongly representative high-resolution pre-segmented images, effectively reducing channel redundancy across different resolutions. We utilize various mechanisms to extract distinct representative features, and with the guidance of these features, SRSNet effectively supplements high-resolution detailed information for features of different resolutions, provides auxiliary features for the pixel decision phase of the network, and detects large-scale changes in the pancreas and pancreatic tumors. Additionally, we design a loss function that enhances SRSNet’s sensitivity to boundary pixels and attenuates the effect of class imbalance. Our method is evaluated on Task07 Pancreas and NIH Pancreas datasets. In the experiment of combined pancreas and tumor segmentation in the MSD dataset, we achieved Dice, Recall, Precision, and MIoU scores of 78.60%, 79.64%, 81.72%, and 71.47%, respectively. Extensive experiments demonstrate that our algorithm not only outperforms state-of-the-art algorithms for pancreas segmentation but also exhibits excellent performance for pancreas and pancreatic tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
THINKG完成签到 ,获得积分10
1秒前
顺顺完成签到 ,获得积分10
1秒前
1秒前
酷炫的凤妖完成签到 ,获得积分10
1秒前
微笑的向日葵完成签到 ,获得积分10
1秒前
苗条的钻石应助落雨采纳,获得10
1秒前
LuHai完成签到 ,获得积分10
1秒前
Ava应助哭泣的月饼采纳,获得10
1秒前
唔拉啦完成签到 ,获得积分10
1秒前
小马甲应助书一卷采纳,获得20
1秒前
cxp完成签到 ,获得积分10
1秒前
啦啦完成签到,获得积分10
1秒前
1秒前
章传奇完成签到 ,获得积分10
2秒前
1o完成签到 ,获得积分10
2秒前
xz123完成签到 ,获得积分10
2秒前
神勇马里奥完成签到 ,获得积分10
2秒前
HeidiW完成签到 ,获得积分10
2秒前
2秒前
碧蓝静芙完成签到 ,获得积分10
2秒前
dd完成签到 ,获得积分10
2秒前
ZzZzZzTtYy完成签到 ,获得积分10
2秒前
冷艳的二娘完成签到,获得积分10
3秒前
XLH完成签到 ,获得积分10
3秒前
发论文完成签到 ,获得积分10
3秒前
BowieHuang应助庆丫头采纳,获得10
3秒前
摔碎玻璃瓶完成签到 ,获得积分10
3秒前
lj完成签到 ,获得积分10
3秒前
yyy完成签到 ,获得积分10
3秒前
李爱国应助alc采纳,获得10
3秒前
LU完成签到 ,获得积分10
3秒前
王锐完成签到 ,获得积分10
3秒前
赘婿应助发粪涂墙采纳,获得10
3秒前
懵懂的沉鱼完成签到 ,获得积分10
4秒前
柚子完成签到 ,获得积分10
4秒前
DR_Su完成签到,获得积分10
4秒前
冷静水蓝完成签到 ,获得积分10
4秒前
南松完成签到 ,获得积分10
4秒前
烂漫的白昼完成签到 ,获得积分10
4秒前
p454q发布了新的文献求助10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597953
求助须知:如何正确求助?哪些是违规求助? 4683487
关于积分的说明 14829823
捐赠科研通 4661930
什么是DOI,文献DOI怎么找? 2536962
邀请新用户注册赠送积分活动 1504544
关于科研通互助平台的介绍 1470244