已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors

分割 计算机科学 人工智能 胰腺 模式识别(心理学) 特征(语言学) 精确性和召回率 像素 计算机视觉 医学 内科学 语言学 哲学
作者
Luyang Cao,Jianwei Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105562-105562 被引量:5
标识
DOI:10.1016/j.bspc.2023.105562
摘要

Accurate and reliable segmentation of the pancreas and its lesions on computed tomography (CT) images is crucial in medical imaging for preoperative diagnosis, surgical planning, and postoperative monitoring. However, there are limited studies that address simultaneous segmentation of the pancreas and pancreatic tumors. Moreover, existing studies have not fully utilized the feature potential of the original images and have neglected the exploration of semantic information with strong representation. To overcome these limitations, we propose the Strongly Representative Semantic-guided Segmentation Network (SRSNet). Specifically, we employ intermediate semantic information to generate strongly representative high-resolution pre-segmented images, effectively reducing channel redundancy across different resolutions. We utilize various mechanisms to extract distinct representative features, and with the guidance of these features, SRSNet effectively supplements high-resolution detailed information for features of different resolutions, provides auxiliary features for the pixel decision phase of the network, and detects large-scale changes in the pancreas and pancreatic tumors. Additionally, we design a loss function that enhances SRSNet’s sensitivity to boundary pixels and attenuates the effect of class imbalance. Our method is evaluated on Task07 Pancreas and NIH Pancreas datasets. In the experiment of combined pancreas and tumor segmentation in the MSD dataset, we achieved Dice, Recall, Precision, and MIoU scores of 78.60%, 79.64%, 81.72%, and 71.47%, respectively. Extensive experiments demonstrate that our algorithm not only outperforms state-of-the-art algorithms for pancreas segmentation but also exhibits excellent performance for pancreas and pancreatic tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程小懒发布了新的文献求助10
2秒前
Xiaoguo发布了新的文献求助10
4秒前
自由的猫咪完成签到 ,获得积分10
4秒前
传奇3应助vikoer采纳,获得30
5秒前
戈惜完成签到 ,获得积分10
6秒前
乐乐应助淡淡博采纳,获得10
7秒前
8秒前
ace驳回了顾矜应助
9秒前
10秒前
华仔应助贾学敏采纳,获得10
11秒前
慕青应助干净山柳采纳,获得10
12秒前
bkagyin应助Xiaoguo采纳,获得10
12秒前
duoduo发布了新的文献求助10
13秒前
onecat发布了新的文献求助10
16秒前
20秒前
xfbao完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
Cherie77发布了新的文献求助10
21秒前
田様应助夏夏周采纳,获得10
23秒前
23秒前
翰林完成签到,获得积分10
24秒前
程小懒完成签到,获得积分10
25秒前
燕子发布了新的文献求助10
26秒前
淡淡博发布了新的文献求助10
27秒前
28秒前
外向易形完成签到,获得积分10
29秒前
迷茫兽医发布了新的文献求助10
30秒前
TT_Bryant完成签到,获得积分10
31秒前
31秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
SciGPT应助科研通管家采纳,获得30
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
aganer完成签到,获得积分10
33秒前
33秒前
33秒前
CodeCraft应助科研通管家采纳,获得10
33秒前
33秒前
Hepatology发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749