Strongly representative semantic-guided segmentation network for pancreatic and pancreatic tumors

分割 计算机科学 人工智能 胰腺 模式识别(心理学) 特征(语言学) 精确性和召回率 像素 计算机视觉 医学 内科学 语言学 哲学
作者
Luyang Cao,Jianwei Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105562-105562 被引量:8
标识
DOI:10.1016/j.bspc.2023.105562
摘要

Accurate and reliable segmentation of the pancreas and its lesions on computed tomography (CT) images is crucial in medical imaging for preoperative diagnosis, surgical planning, and postoperative monitoring. However, there are limited studies that address simultaneous segmentation of the pancreas and pancreatic tumors. Moreover, existing studies have not fully utilized the feature potential of the original images and have neglected the exploration of semantic information with strong representation. To overcome these limitations, we propose the Strongly Representative Semantic-guided Segmentation Network (SRSNet). Specifically, we employ intermediate semantic information to generate strongly representative high-resolution pre-segmented images, effectively reducing channel redundancy across different resolutions. We utilize various mechanisms to extract distinct representative features, and with the guidance of these features, SRSNet effectively supplements high-resolution detailed information for features of different resolutions, provides auxiliary features for the pixel decision phase of the network, and detects large-scale changes in the pancreas and pancreatic tumors. Additionally, we design a loss function that enhances SRSNet’s sensitivity to boundary pixels and attenuates the effect of class imbalance. Our method is evaluated on Task07 Pancreas and NIH Pancreas datasets. In the experiment of combined pancreas and tumor segmentation in the MSD dataset, we achieved Dice, Recall, Precision, and MIoU scores of 78.60%, 79.64%, 81.72%, and 71.47%, respectively. Extensive experiments demonstrate that our algorithm not only outperforms state-of-the-art algorithms for pancreas segmentation but also exhibits excellent performance for pancreas and pancreatic tumor segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shirley完成签到,获得积分10
4秒前
坚定若冰完成签到,获得积分10
4秒前
cdercder发布了新的文献求助30
4秒前
林芊万应助1122采纳,获得10
4秒前
6秒前
Xiaosi完成签到 ,获得积分10
6秒前
6秒前
6秒前
Yuan发布了新的文献求助10
9秒前
9秒前
9秒前
dfghjkl完成签到,获得积分10
11秒前
兴奋的万声完成签到,获得积分10
11秒前
Kanae201发布了新的文献求助10
11秒前
12秒前
13秒前
冷酷愚志完成签到,获得积分10
13秒前
111完成签到,获得积分10
14秒前
dfghjkl发布了新的文献求助20
14秒前
呆萌的凡完成签到,获得积分10
14秒前
jonghuang发布了新的文献求助10
14秒前
乐观的凌兰完成签到 ,获得积分10
15秒前
唠叨的曼易完成签到,获得积分10
16秒前
17秒前
yinlao完成签到,获得积分0
17秒前
慢慢完成签到 ,获得积分10
18秒前
高雨芳完成签到 ,获得积分10
19秒前
所愿所得应助HY采纳,获得10
22秒前
23秒前
NNUsusan完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
27秒前
感性的夜玉完成签到,获得积分10
27秒前
霁星河完成签到,获得积分10
28秒前
斯文败类应助Yuan采纳,获得10
28秒前
29秒前
CMUVictor发布了新的文献求助10
29秒前
30秒前
zlt完成签到,获得积分10
30秒前
Dan完成签到,获得积分10
33秒前
风信子发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600631
求助须知:如何正确求助?哪些是违规求助? 4686248
关于积分的说明 14842519
捐赠科研通 4677270
什么是DOI,文献DOI怎么找? 2538898
邀请新用户注册赠送积分活动 1505830
关于科研通互助平台的介绍 1471207