已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Asynchronous Federated Unlearning

计算机科学 异步通信 再培训 直觉 删除 联合学习 抹除码 分布式计算 人工智能 计算机网络 程序设计语言 哲学 电信 解码方法 认识论 国际贸易 业务
作者
Ningxin Su,Baochun Li
标识
DOI:10.1109/infocom53939.2023.10229075
摘要

Thanks to regulatory policies such as the General Data Protection Regulation (GDPR), it is essential to provide users with the right to erasure regarding their own private data, even if such data has been used to train a neural network model. Such a machine unlearning problem becomes even more challenging in the context of federated learning, where clients collaborate to train a global model with their private data. When a client requests its data to be erased, its effects have already gradually permeated through a large number of clients, as the server aggregates client updates over multiple communication rounds. All of these affected clients need to participate in the retraining process, leading to prohibitive retraining costs with respect to the wall-clock training time.In this paper, we present the design and implementation of Knot, a new clustered aggregation mechanism custom-tailored to asynchronous federated learning. The design of Knot is based upon our intuition that, with asynchronous federated learning, clients can be divided into clusters, and aggregation can be performed within each cluster only so that retraining due to data erasure can be limited to within each cluster as well. To optimize client-cluster assignment, we formulated a lexicographical minimization problem that could be transformed into a linear programming problem and solved efficiently. Over a variety of datasets and tasks, we have shown clear evidence that Knot outperformed the state-of-the-art federated unlearning mechanisms by up to 85% in the context of asynchronous federated learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助乐观的安梦采纳,获得10
1秒前
2秒前
开心的乐枫完成签到,获得积分20
4秒前
4秒前
黑熊精完成签到,获得积分10
4秒前
肉胖胖肉完成签到,获得积分10
7秒前
9秒前
尼克11完成签到,获得积分10
9秒前
今后应助小狗采纳,获得10
9秒前
kdh510发布了新的文献求助10
10秒前
远山完成签到 ,获得积分10
10秒前
11秒前
酷波er应助落叶采纳,获得10
14秒前
14秒前
nano_metal完成签到 ,获得积分10
15秒前
16秒前
louziqi发布了新的文献求助10
18秒前
18秒前
yingliusd发布了新的文献求助10
18秒前
20秒前
小小莫完成签到 ,获得积分10
20秒前
Bella发布了新的文献求助10
22秒前
打打应助xw采纳,获得10
22秒前
NIKE112完成签到,获得积分10
22秒前
24秒前
26秒前
明明完成签到,获得积分20
27秒前
30秒前
30秒前
十一发布了新的文献求助10
32秒前
32秒前
nn发布了新的文献求助10
34秒前
xw发布了新的文献求助10
35秒前
35秒前
星空完成签到 ,获得积分10
35秒前
36秒前
37秒前
明明发布了新的文献求助10
37秒前
39秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269473
捐赠科研通 2560089
什么是DOI,文献DOI怎么找? 1388851
科研通“疑难数据库(出版商)”最低求助积分说明 650913
邀请新用户注册赠送积分活动 627798