One-Step Synthesis of Fragment-Reduced Graphene Oxide as an Electrode Material for Supercapacitors

超级电容器 石墨烯 材料科学 电解质 电容 氧化物 电极 介孔材料 化学工程 热液循环 纳米技术 吸附 水热合成 有机化学 物理化学 催化作用 化学 工程类 冶金
作者
Fangbo Yao,Wenruo Li,Shabrina Khainunni,Jiaojiao Ma,Choji Fukuhara,Chang Yi Kong
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (36): 42424-42438 被引量:10
标识
DOI:10.1021/acsami.3c05764
摘要

We herein report for the first time a simple environmentally friendly hydrothermal method for one-step synthesis of fragment-reduced graphene oxide (FrGO) under mild conditions without the addition of reducing agents, and we applied it as an electrode material for a supercapacitor. The characterization results show that the introduction of Al2O3 as a spacer and HCl as an etchant results in a macroporous/mesoporous structure, increases the fragmentation of the FrGO microtopography, shortens the electron/ion transport path, and increases the contact between the electrode material and the electrolyte. Compared to the traditional hydrothermal reduced graphene materials, FrGO shows a larger specific capacitance. The results indicate that suitable hydrothermal temperature and time can effectively promote the retention of more oxygen-containing functional groups on the graphene surface. The first-principles density functional theory (DFT) calculation results show that the electrostatic potential in carbonyl group graphene is more negative, favored by the H+ adsorption, and provides the system with a pseudocapacitive effect. Under optimized conditions, FrGO (1:4, 180 °C, 3 h) exhibits 417 F/g at 1 A/g with an outstanding capacitance retention of 78.51% at 50 A/g and exhibits remarkable stability over 20 000 charge/discharge cycles. The proposed FrGO-based synthesis method can be used to guide the development of electrode materials for various supercapacitor devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
F冯完成签到,获得积分10
刚刚
刚刚
JJ完成签到,获得积分10
刚刚
二豆子0发布了新的文献求助10
刚刚
潦草发布了新的文献求助10
1秒前
sarah完成签到,获得积分10
1秒前
1秒前
凸迩丝儿完成签到 ,获得积分10
1秒前
科研通AI5应助wu采纳,获得30
1秒前
1秒前
爆米花应助艺玲采纳,获得10
2秒前
2秒前
诸葛雪兰发布了新的文献求助10
2秒前
3秒前
CC完成签到,获得积分10
3秒前
wanci应助gaos采纳,获得10
3秒前
顾矜应助四火采纳,获得10
3秒前
人福药业发布了新的文献求助30
3秒前
liuguohua126发布了新的文献求助10
4秒前
分子遗传小菜鸟完成签到,获得积分10
4秒前
洛尚发布了新的文献求助10
4秒前
英俊的铭应助咳咳采纳,获得10
5秒前
科研通AI2S应助嗯呢采纳,获得10
5秒前
姆姆发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
11发布了新的文献求助10
8秒前
大个应助limof采纳,获得10
8秒前
9秒前
竹筏过海应助chen采纳,获得50
10秒前
10秒前
schoolboy发布了新的文献求助10
10秒前
完美世界应助洛尚采纳,获得10
10秒前
苹果萧发布了新的文献求助10
11秒前
钟是一梦发布了新的文献求助10
12秒前
Lucas应助Light采纳,获得10
13秒前
13秒前
13秒前
李健的粉丝团团长应助Ll采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740