Early Heart Disease Detection Using Mel-Spectrograms and Deep Learning

光谱图 深度学习 卷积神经网络 计算机科学 人工智能 召回 机器学习 心脏病 人工神经网络 语音识别 医学 心脏病学 心理学 认知心理学
作者
Sricharan Donkada,Seyedamin Pouriyeh,Reza M. Parizi,Chloe Yixin Xie,Hossain Shahriar
标识
DOI:10.1109/iscc58397.2023.10217915
摘要

Heart disease is a leading cause of morbidity and mortality worldwide, necessitating the development of innovative diagnostic methodologies for early detection. This study presents a novel deep convolutional neural network model that leverages Mel-spectrograms to accurately classify heart sounds. Our approach demonstrates significant advancements in heart disease detection, achieving high accuracy, specificity, and unweighted average recall scores (UAR), which are critical factors for practical clinical applications. The comparison of our proposed model's performance with a PANN-based model from a previous study highlights the strengths of our approach, particularly in terms of specificity and UAR. The successful application of Mel-spectrograms in conjunction with deep learning techniques illustrates the potential for widespread clinical adoption of our model, ultimately contributing to early detection and improved patient outcomes. Furthermore, we discuss potential avenues for future research to enhance the model's effectiveness, such as incorporating additional features and exploring alternative deep learning architectures. In conclusion, our deep convolutional neural network model, combined with Mel-spectrograms, offers a significant step forward in the field of heart sound classification and the early detection of heart diseases, demonstrating its potential for real-world clinical applications and improved patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
刚刚
Frank应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
临时演员完成签到,获得积分0
刚刚
科研通AI2S应助福西西采纳,获得10
刚刚
畅快大象发布了新的文献求助10
刚刚
大个应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
刚刚
Thea完成签到 ,获得积分10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Animagus应助科研通管家采纳,获得20
1秒前
1秒前
Frank应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
zaza发布了新的文献求助10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
赘婿应助onmyway采纳,获得10
1秒前
1秒前
1秒前
小马甲应助谨慎的难胜采纳,获得10
1秒前
1秒前
1秒前
Hhh发布了新的文献求助10
2秒前
2秒前
玩命的新波完成签到,获得积分10
2秒前
Owen应助美味又健康采纳,获得10
2秒前
2秒前
皮拉奇完成签到,获得积分10
2秒前
2秒前
Bihhh发布了新的文献求助10
3秒前
fifteen完成签到,获得积分10
3秒前
3秒前
小祝完成签到,获得积分10
3秒前
SL发布了新的文献求助10
3秒前
4秒前
蒋杰应助zz采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480141
求助须知:如何正确求助?哪些是违规求助? 4581340
关于积分的说明 14380127
捐赠科研通 4509924
什么是DOI,文献DOI怎么找? 2471597
邀请新用户注册赠送积分活动 1457999
关于科研通互助平台的介绍 1431756