氧化应激
冲程(发动机)
炎症
氧化磷酸化
医学
氧化损伤
化学
免疫学
细胞生物学
生物
生物化学
内分泌学
工程类
机械工程
作者
Qiong Luo,Xin Ji,Liang Zhang,Xin Huang,Xiao Qin Wang,Bo Zhang
标识
DOI:10.1016/j.biopha.2023.115346
摘要
Heat stroke (HS) is the deadliest disease. Due to the complex pathogenesis of HS, lack of effective therapeutic drugs for clinical treatment. Shikonin (SK) is the main active compound of Radix Arnebiae, which was evaluated on the HS model (temperature: (41 ± 0.5) ℃, relative humidity: (60 ± 5) %) via pathological and biochemical approaches in vivo and in vitro. Upon the dose of 10 mg.kg−1, SK delays the rising rate of core temperature, prolongs the survival time of mice, and improves organ injury and coagulation function markedly. Serum HS biomarkers interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were decreased significantly by SK, which contribute to liver and lung protection in the models. Three pathways' responses to heat-stress were found to have a close connection with the IL-17 pathway via RNA sequencing and network analysis. WB and IHC results showed that the nuclear factor-κB (NF-κB) p65 in the SK group was down-regulated (P < 0.05). The expressions of nuclear factor erythroid 2 like 2 (NFE2L2/Nrf2) and heat shock protein 70 (HSP70) were up-regulated (P < 0.05). Additional administration of recombinant IL-17A protein on the HS model up-regulated the expression level of NF- κB p65 in the liver and lung tissue, additional intraperitoneal injection of IL-17A antibody in mice has a synergistic effect with SK in inhibiting tissue inflammatory response and protecting HS. In summary, SK was proved an effective compound for fulfilling the anti-inflammatory and antioxidative capacity of the HS model by reducing the production and inhibiting the expression of IL-17A.
科研通智能强力驱动
Strongly Powered by AbleSci AI