已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tunning and challenges

高光谱成像 计算机科学 超参数 可扩展性 人工智能 异常检测 深度学习 机器学习 特征工程 数据科学 数据挖掘 数据库
作者
Garima Jaiswal,Ritu Rani,Harshita Mangotra,Arun Sharma
出处
期刊:Computer Science Review [Elsevier]
卷期号:50: 100584-100584 被引量:6
标识
DOI:10.1016/j.cosrev.2023.100584
摘要

Hyperspectral imaging (HSI) is a powerful tool that can capture and analyze a range of spectral bands, providing unparalleled levels of precision and accuracy in data analysis. Another technology gaining popularity in many industries is Autoencoders (AE). AE uses advanced deep learning algorithms for encoding and decoding data, leading to highly precise and efficient neural network-based models. Within the domain of HSI, AE emerges as a potent approach to tackle the essential hurdles associated with data analysis and feature extraction. Combining both HSI and AE (HSI – AE) can lead to a revolution in various industries, including but not limited to healthcare and environmental monitoring, because of more efficient analysis approaches and decision-making. AE can be used to discover hidden patterns and insights in large-scale datasets, allowing researchers to make more informed decisions based on much better predictions. Similarly, HSI can benefit from the scalability and flexibility AE offers, leading to faster and more efficient data processing. This article aims to provide a comprehensive review of the integration of HSI - AE, covering the history and background knowledge, motivation, and combined benefits of HSI and AE. It examines the applicability of HSI-AE in many use-case domains, such as classification, hyperspectral unmixing, and anomaly detection. It also provides a hyperparameter tuning and an in-depth survey of their use. The article emphasizes crucial areas for future exploration, such as conducting further research to enhance AE’s performance in HSI applications and devising novel algorithms to overcome the distinctive challenges presented by HSI data. Overall, the culmination of the HSI with AE can be seen as offering a promising solution for challenges like data analysis management and pattern recognition, enabling accurate and efficient decision-making across industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助LMH采纳,获得10
2秒前
3秒前
wwz完成签到 ,获得积分10
4秒前
充电宝应助zm采纳,获得10
5秒前
风趣雅青发布了新的文献求助30
5秒前
丘比特应助wu采纳,获得10
7秒前
活泼的机器猫完成签到,获得积分10
9秒前
Lucas应助爱打球的小蔡鸡采纳,获得10
10秒前
小金星星完成签到 ,获得积分10
11秒前
13秒前
Orange应助源妮儿儿采纳,获得10
16秒前
Rainbow7完成签到,获得积分10
17秒前
自行者发布了新的文献求助10
18秒前
xiuxiuzhang完成签到 ,获得积分10
21秒前
单薄的采萱完成签到 ,获得积分10
21秒前
小蘑菇应助半夏采纳,获得10
21秒前
23秒前
莉莉安完成签到 ,获得积分10
26秒前
27秒前
ARESCI发布了新的文献求助10
27秒前
清爽达完成签到 ,获得积分10
28秒前
29秒前
研友_Z6Qrbn发布了新的文献求助10
29秒前
wu发布了新的文献求助10
30秒前
zhangyt完成签到 ,获得积分10
32秒前
源妮儿儿发布了新的文献求助10
33秒前
sandra完成签到 ,获得积分10
37秒前
FDY完成签到,获得积分10
37秒前
所所应助看着过得去采纳,获得10
39秒前
传奇3应助Charles采纳,获得10
41秒前
大模型应助wu采纳,获得10
42秒前
隐形曼青应助ARESCI采纳,获得10
43秒前
shencheng完成签到,获得积分10
46秒前
48秒前
49秒前
科研通AI2S应助十六月亮采纳,获得10
54秒前
Hello应助居居子采纳,获得10
54秒前
Agamemnon发布了新的文献求助10
55秒前
55秒前
56秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164729
求助须知:如何正确求助?哪些是违规求助? 2815800
关于积分的说明 7910197
捐赠科研通 2475349
什么是DOI,文献DOI怎么找? 1318097
科研通“疑难数据库(出版商)”最低求助积分说明 632005
版权声明 602282