Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tunning and challenges

高光谱成像 计算机科学 超参数 可扩展性 人工智能 异常检测 深度学习 机器学习 特征工程 数据科学 数据挖掘 数据库
作者
Garima Jaiswal,Ritu Rani,Harshita Mangotra,Arun Sharma
出处
期刊:Computer Science Review [Elsevier BV]
卷期号:50: 100584-100584 被引量:42
标识
DOI:10.1016/j.cosrev.2023.100584
摘要

Hyperspectral imaging (HSI) is a powerful tool that can capture and analyze a range of spectral bands, providing unparalleled levels of precision and accuracy in data analysis. Another technology gaining popularity in many industries is Autoencoders (AE). AE uses advanced deep learning algorithms for encoding and decoding data, leading to highly precise and efficient neural network-based models. Within the domain of HSI, AE emerges as a potent approach to tackle the essential hurdles associated with data analysis and feature extraction. Combining both HSI and AE (HSI – AE) can lead to a revolution in various industries, including but not limited to healthcare and environmental monitoring, because of more efficient analysis approaches and decision-making. AE can be used to discover hidden patterns and insights in large-scale datasets, allowing researchers to make more informed decisions based on much better predictions. Similarly, HSI can benefit from the scalability and flexibility AE offers, leading to faster and more efficient data processing. This article aims to provide a comprehensive review of the integration of HSI - AE, covering the history and background knowledge, motivation, and combined benefits of HSI and AE. It examines the applicability of HSI-AE in many use-case domains, such as classification, hyperspectral unmixing, and anomaly detection. It also provides a hyperparameter tuning and an in-depth survey of their use. The article emphasizes crucial areas for future exploration, such as conducting further research to enhance AE’s performance in HSI applications and devising novel algorithms to overcome the distinctive challenges presented by HSI data. Overall, the culmination of the HSI with AE can be seen as offering a promising solution for challenges like data analysis management and pattern recognition, enabling accurate and efficient decision-making across industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tina完成签到,获得积分10
刚刚
王哈哈完成签到,获得积分20
刚刚
2秒前
SciGPT应助科研通管家采纳,获得30
2秒前
quhayley应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
SHAO应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
March应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
fd163c应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
quhayley应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得30
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得50
4秒前
4秒前
4秒前
5秒前
陈曦发布了新的文献求助10
5秒前
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
SYLH应助科研通管家采纳,获得20
5秒前
Atan完成签到,获得积分10
6秒前
Kevin发布了新的文献求助10
6秒前
6秒前
6秒前
有点灰发布了新的文献求助30
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021