Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tunning and challenges

高光谱成像 计算机科学 超参数 可扩展性 人工智能 异常检测 深度学习 机器学习 特征工程 数据科学 数据挖掘 数据库
作者
Garima Jaiswal,Ritu Rani,Harshita Mangotra,Arun Sharma
出处
期刊:Computer Science Review [Elsevier BV]
卷期号:50: 100584-100584 被引量:42
标识
DOI:10.1016/j.cosrev.2023.100584
摘要

Hyperspectral imaging (HSI) is a powerful tool that can capture and analyze a range of spectral bands, providing unparalleled levels of precision and accuracy in data analysis. Another technology gaining popularity in many industries is Autoencoders (AE). AE uses advanced deep learning algorithms for encoding and decoding data, leading to highly precise and efficient neural network-based models. Within the domain of HSI, AE emerges as a potent approach to tackle the essential hurdles associated with data analysis and feature extraction. Combining both HSI and AE (HSI – AE) can lead to a revolution in various industries, including but not limited to healthcare and environmental monitoring, because of more efficient analysis approaches and decision-making. AE can be used to discover hidden patterns and insights in large-scale datasets, allowing researchers to make more informed decisions based on much better predictions. Similarly, HSI can benefit from the scalability and flexibility AE offers, leading to faster and more efficient data processing. This article aims to provide a comprehensive review of the integration of HSI - AE, covering the history and background knowledge, motivation, and combined benefits of HSI and AE. It examines the applicability of HSI-AE in many use-case domains, such as classification, hyperspectral unmixing, and anomaly detection. It also provides a hyperparameter tuning and an in-depth survey of their use. The article emphasizes crucial areas for future exploration, such as conducting further research to enhance AE’s performance in HSI applications and devising novel algorithms to overcome the distinctive challenges presented by HSI data. Overall, the culmination of the HSI with AE can be seen as offering a promising solution for challenges like data analysis management and pattern recognition, enabling accurate and efficient decision-making across industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琦琦完成签到,获得积分10
6秒前
zzzz完成签到,获得积分20
11秒前
GEZIKU完成签到 ,获得积分10
12秒前
19秒前
26秒前
赵三岁发布了新的文献求助10
33秒前
wwb完成签到,获得积分10
36秒前
40秒前
41秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
41秒前
能干冰露完成签到,获得积分10
44秒前
牛奶拌可乐完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助30
46秒前
周小鱼完成签到 ,获得积分10
50秒前
55秒前
1分钟前
老张完成签到,获得积分10
1分钟前
1分钟前
zhugao完成签到,获得积分10
1分钟前
1分钟前
南风知我意完成签到,获得积分10
1分钟前
朴实寻琴完成签到 ,获得积分10
1分钟前
可可可爱完成签到 ,获得积分10
1分钟前
lsy完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
wwb发布了新的文献求助10
1分钟前
1分钟前
1分钟前
LHT完成签到,获得积分10
1分钟前
落寞凌波发布了新的文献求助10
1分钟前
桐桐应助幸福的杨小夕采纳,获得10
1分钟前
韩麒嘉完成签到 ,获得积分10
1分钟前
聪慧的凝海完成签到 ,获得积分0
2分钟前
2分钟前
wwb发布了新的文献求助10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022