Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tunning and challenges

高光谱成像 计算机科学 超参数 可扩展性 人工智能 异常检测 深度学习 机器学习 特征工程 数据科学 数据挖掘 数据库
作者
Garima Jaiswal,Ritu Rani,Harshita Mangotra,Arun Sharma
出处
期刊:Computer Science Review [Elsevier BV]
卷期号:50: 100584-100584 被引量:6
标识
DOI:10.1016/j.cosrev.2023.100584
摘要

Hyperspectral imaging (HSI) is a powerful tool that can capture and analyze a range of spectral bands, providing unparalleled levels of precision and accuracy in data analysis. Another technology gaining popularity in many industries is Autoencoders (AE). AE uses advanced deep learning algorithms for encoding and decoding data, leading to highly precise and efficient neural network-based models. Within the domain of HSI, AE emerges as a potent approach to tackle the essential hurdles associated with data analysis and feature extraction. Combining both HSI and AE (HSI – AE) can lead to a revolution in various industries, including but not limited to healthcare and environmental monitoring, because of more efficient analysis approaches and decision-making. AE can be used to discover hidden patterns and insights in large-scale datasets, allowing researchers to make more informed decisions based on much better predictions. Similarly, HSI can benefit from the scalability and flexibility AE offers, leading to faster and more efficient data processing. This article aims to provide a comprehensive review of the integration of HSI - AE, covering the history and background knowledge, motivation, and combined benefits of HSI and AE. It examines the applicability of HSI-AE in many use-case domains, such as classification, hyperspectral unmixing, and anomaly detection. It also provides a hyperparameter tuning and an in-depth survey of their use. The article emphasizes crucial areas for future exploration, such as conducting further research to enhance AE’s performance in HSI applications and devising novel algorithms to overcome the distinctive challenges presented by HSI data. Overall, the culmination of the HSI with AE can be seen as offering a promising solution for challenges like data analysis management and pattern recognition, enabling accurate and efficient decision-making across industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈醋塔塔完成签到,获得积分10
刚刚
科研通AI5应助lixm采纳,获得10
1秒前
liushiyi发布了新的文献求助10
1秒前
香蕉觅云应助芝麻采纳,获得10
3秒前
JamesPei应助韦见风采纳,获得10
3秒前
量子星尘发布了新的文献求助20
6秒前
6秒前
闪闪寒荷完成签到 ,获得积分10
7秒前
7秒前
共享精神应助zxyhb采纳,获得10
7秒前
czp发布了新的文献求助10
10秒前
缓慢小蚂蚁完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
小蘑菇应助yunjichen采纳,获得10
11秒前
liushiyi完成签到,获得积分10
11秒前
失眠哈密瓜完成签到 ,获得积分10
12秒前
成就书雪完成签到,获得积分10
12秒前
12秒前
zho应助Peng2876649925采纳,获得10
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
科研通AI5应助Peng2876649925采纳,获得10
19秒前
HOLLOW完成签到,获得积分10
20秒前
ding应助开心的西瓜采纳,获得10
20秒前
Ava应助寒冷如冬采纳,获得10
20秒前
20秒前
Beck发布了新的文献求助10
21秒前
Zkxxxx发布了新的文献求助100
21秒前
24秒前
mulidexin2021发布了新的文献求助10
24秒前
紫津完成签到,获得积分10
24秒前
wyy发布了新的文献求助10
25秒前
25秒前
tanrui完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
29秒前
yyyyy语言完成签到,获得积分20
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667729
求助须知:如何正确求助?哪些是违规求助? 3226235
关于积分的说明 9768586
捐赠科研通 2936216
什么是DOI,文献DOI怎么找? 1608232
邀请新用户注册赠送积分活动 759549
科研通“疑难数据库(出版商)”最低求助积分说明 735404