Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tunning and challenges

高光谱成像 计算机科学 超参数 可扩展性 人工智能 异常检测 深度学习 机器学习 特征工程 数据科学 数据挖掘 数据库
作者
Garima Jaiswal,Ritu Rani,Harshita Mangotra,Arun Sharma
出处
期刊:Computer Science Review [Elsevier BV]
卷期号:50: 100584-100584 被引量:42
标识
DOI:10.1016/j.cosrev.2023.100584
摘要

Hyperspectral imaging (HSI) is a powerful tool that can capture and analyze a range of spectral bands, providing unparalleled levels of precision and accuracy in data analysis. Another technology gaining popularity in many industries is Autoencoders (AE). AE uses advanced deep learning algorithms for encoding and decoding data, leading to highly precise and efficient neural network-based models. Within the domain of HSI, AE emerges as a potent approach to tackle the essential hurdles associated with data analysis and feature extraction. Combining both HSI and AE (HSI – AE) can lead to a revolution in various industries, including but not limited to healthcare and environmental monitoring, because of more efficient analysis approaches and decision-making. AE can be used to discover hidden patterns and insights in large-scale datasets, allowing researchers to make more informed decisions based on much better predictions. Similarly, HSI can benefit from the scalability and flexibility AE offers, leading to faster and more efficient data processing. This article aims to provide a comprehensive review of the integration of HSI - AE, covering the history and background knowledge, motivation, and combined benefits of HSI and AE. It examines the applicability of HSI-AE in many use-case domains, such as classification, hyperspectral unmixing, and anomaly detection. It also provides a hyperparameter tuning and an in-depth survey of their use. The article emphasizes crucial areas for future exploration, such as conducting further research to enhance AE’s performance in HSI applications and devising novel algorithms to overcome the distinctive challenges presented by HSI data. Overall, the culmination of the HSI with AE can be seen as offering a promising solution for challenges like data analysis management and pattern recognition, enabling accurate and efficient decision-making across industries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
prime发布了新的文献求助10
1秒前
乐乐应助huyz采纳,获得10
1秒前
2秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Kayla发布了新的文献求助10
5秒前
5秒前
张雯思发布了新的文献求助10
7秒前
HuSP完成签到,获得积分10
7秒前
7秒前
8秒前
zzcres完成签到,获得积分10
8秒前
anna发布了新的文献求助10
10秒前
勤奋梨愁发布了新的文献求助10
11秒前
11秒前
潘善若发布了新的文献求助10
11秒前
momo发布了新的文献求助10
12秒前
12秒前
16秒前
18秒前
诺奇完成签到,获得积分10
20秒前
潘善若发布了新的文献求助10
22秒前
乖猫要努力应助猪猪hero采纳,获得10
22秒前
25秒前
25秒前
科目三应助不学无术采纳,获得10
25秒前
MrSong完成签到,获得积分10
29秒前
29秒前
momo发布了新的文献求助10
29秒前
小曾应助安静的万声采纳,获得10
30秒前
高贵的飞阳完成签到,获得积分10
30秒前
小梦发布了新的文献求助10
31秒前
31秒前
32秒前
科研通AI5应助GooJohn采纳,获得10
33秒前
Ava应助yyy采纳,获得10
37秒前
善学以致用应助yyy采纳,获得10
37秒前
共享精神应助yyy采纳,获得10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136