Synergizing Machine Learning and the Aviation Sector in Lithium-Ion Battery Applications: A Review

电池(电) 航空 可靠性(半导体) 计算机科学 锂(药物) 可靠性工程 人工智能 系统工程 功率(物理) 工程类 航空航天工程 医学 物理 量子力学 内分泌学
作者
Julan Chen,Guangheng Qi,Kai Wang
出处
期刊:Energies [MDPI AG]
卷期号:16 (17): 6318-6318 被引量:12
标识
DOI:10.3390/en16176318
摘要

Lithium-ion batteries, as a typical energy storage device, have broad application prospects. However, developing lithium-ion batteries with high energy density, high power density, long lifespan, and safety and reliability remains a huge challenge. Machine learning, as an emerging artificial intelligence technology, has successfully solved many problems in academic research on business, financial management, and high-dimensional complex problems. It has great potential for mining and revealing valuable information from experimental and theoretical datasets. Therefore, quantitative “structure function” correlations can be established to predict battery health status. Machine learning also shows significant advantages in strategy optimization such as energy optimization management strategy. For lithium-ion batteries, their performance and safety are closely related to the material structure, battery health, fault analysis, and diagnosis. This article reviews the application of machine learning in lithium-ion battery material research, battery health estimation, fault analysis, and diagnosis, and analyzes its application in aviation batteries in conjunction with the development of green aviation technology. By exploring the practical applications of machine learning algorithms and the advantages and disadvantages of different applications, this article summarizes and prospects the application of machine learning in lithium batteries, which is conducive to further understanding and development in this direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周粥完成签到,获得积分10
刚刚
刚刚
光影发布了新的文献求助10
1秒前
tansl1989完成签到,获得积分20
1秒前
0501发布了新的文献求助10
1秒前
小蘑菇应助玉玊采纳,获得10
1秒前
蓝水半杯完成签到,获得积分10
2秒前
酷酷薯片完成签到,获得积分10
4秒前
Orange应助调皮的寻菡采纳,获得10
4秒前
5秒前
拼搏山水完成签到,获得积分10
5秒前
英姑应助是然宝啊采纳,获得10
6秒前
李健的小迷弟应助sjdenghao采纳,获得10
6秒前
6秒前
Bobonice完成签到,获得积分10
6秒前
Orange应助LV采纳,获得10
6秒前
7秒前
Owen应助Zachia采纳,获得10
8秒前
YA发布了新的文献求助10
8秒前
9秒前
10秒前
kml发布了新的文献求助10
10秒前
10秒前
拼搏山水发布了新的文献求助10
11秒前
11秒前
水光云隐完成签到,获得积分10
11秒前
所所应助受伤千易采纳,获得10
12秒前
大个应助暴躁的豆芽采纳,获得10
14秒前
14秒前
此去经年完成签到,获得积分10
15秒前
15秒前
光影完成签到,获得积分10
15秒前
16秒前
16秒前
Lucas应助huadao采纳,获得10
17秒前
Mine虚无发布了新的文献求助10
18秒前
lysixsixsix发布了新的文献求助50
20秒前
小杨发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256152
求助须知:如何正确求助?哪些是违规求助? 2898242
关于积分的说明 8300614
捐赠科研通 2567422
什么是DOI,文献DOI怎么找? 1394523
科研通“疑难数据库(出版商)”最低求助积分说明 652817
邀请新用户注册赠送积分活动 630511