Prediction of skin sensitization using machine learning

局部淋巴结试验 三元运算 工具箱 支持向量机 敏化 皮肤致敏 计算机科学 二进制数 机器学习 欧盟委员会 人工智能 欧洲联盟 医学 数学 免疫学 业务 经济政策 算术 程序设计语言
作者
Jueng Eun Im,Jung Dae Lee,Hyang Yeon Kim,Hak Rim Kim,Dong Wan Seo,Kyu‐Bong Kim
出处
期刊:Toxicology in Vitro [Elsevier]
卷期号:93: 105690-105690
标识
DOI:10.1016/j.tiv.2023.105690
摘要

As global awareness of animal welfare spreads, the development of alternative animal test models is increasingly necessary. The purpose of this study was to develop a practical machine-learning model for skin sensitization using three physicochemical properties of the chemicals: surface tension, melting point, and molecular weight. In this study, a total of 482 chemicals with local lymph node assay results were collected, and 297 datasets with 6 physico-chemical properties were used to develop Random Forest (RF) model for skin sensitization. The developed model was validated with 45 fragrance allergens announced by European Commission. The validation results showed that RF achieved better or similar classification performance with f1-scores of 54% for penal, 82% for ternary, and 96% for binary compared with Support Vector Machine (SVM) (penal, 41%; ternary, 81%; binary, 93%), QSARs (ChemTunes, 72% for ternary; OECD Toolbox, 89% for binary), and a linear model (Kim et al., 2020) (41% for penal), and we recommend the ternary classification based on Global Harmonized System providing more detailed and precise information. In the further study, the proposed model results were experimentally validated with the Direct Peptide Reactivity Assay (DPRA, OECD TG 442C approved model), and the results showed a similar tendency. We anticipate that this study will help to easily and quickly screen chemical sensitization hazards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助机智的天曼采纳,获得10
刚刚
大虎完成签到,获得积分10
刚刚
威武鸽子完成签到,获得积分10
1秒前
小马发布了新的文献求助10
1秒前
心悦臣服发布了新的文献求助10
1秒前
1秒前
一二完成签到,获得积分10
2秒前
舒适亦凝发布了新的文献求助10
2秒前
2秒前
研友_ZbM2qn应助小小张采纳,获得30
2秒前
3秒前
栗栗发布了新的文献求助10
4秒前
科研渣发布了新的文献求助10
4秒前
xyx发布了新的文献求助10
4秒前
panghu完成签到,获得积分10
4秒前
L-g-b完成签到,获得积分10
5秒前
6秒前
panghu发布了新的文献求助10
7秒前
森ok关注了科研通微信公众号
7秒前
含蓄冬瓜完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
舒适亦凝完成签到,获得积分10
9秒前
10秒前
jillian完成签到,获得积分10
10秒前
丘比特应助乐一吖采纳,获得10
10秒前
10秒前
素言发布了新的文献求助10
11秒前
情怀应助心悦臣服采纳,获得10
12秒前
guo发布了新的文献求助10
12秒前
12秒前
风筝有风发布了新的文献求助10
13秒前
科研渣完成签到,获得积分10
13秒前
xyx完成签到,获得积分10
13秒前
autism发布了新的文献求助10
13秒前
眼睛大的帆布鞋完成签到,获得积分10
14秒前
jillian发布了新的文献求助10
14秒前
zmayq完成签到,获得积分10
15秒前
胡杨柳发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309005
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508619
捐赠科研通 2617432
什么是DOI,文献DOI怎么找? 1430073
科研通“疑难数据库(出版商)”最低求助积分说明 664018
邀请新用户注册赠送积分活动 649234