Prediction of skin sensitization using machine learning

局部淋巴结试验 三元运算 工具箱 支持向量机 敏化 皮肤致敏 计算机科学 二进制数 机器学习 欧盟委员会 人工智能 欧洲联盟 医学 数学 免疫学 业务 经济政策 算术 程序设计语言
作者
Jueng Eun Im,Jung Dae Lee,Hyang Yeon Kim,Hak Rim Kim,Dong Wan Seo,Kyu‐Bong Kim
出处
期刊:Toxicology in Vitro [Elsevier]
卷期号:93: 105690-105690
标识
DOI:10.1016/j.tiv.2023.105690
摘要

As global awareness of animal welfare spreads, the development of alternative animal test models is increasingly necessary. The purpose of this study was to develop a practical machine-learning model for skin sensitization using three physicochemical properties of the chemicals: surface tension, melting point, and molecular weight. In this study, a total of 482 chemicals with local lymph node assay results were collected, and 297 datasets with 6 physico-chemical properties were used to develop Random Forest (RF) model for skin sensitization. The developed model was validated with 45 fragrance allergens announced by European Commission. The validation results showed that RF achieved better or similar classification performance with f1-scores of 54% for penal, 82% for ternary, and 96% for binary compared with Support Vector Machine (SVM) (penal, 41%; ternary, 81%; binary, 93%), QSARs (ChemTunes, 72% for ternary; OECD Toolbox, 89% for binary), and a linear model (Kim et al., 2020) (41% for penal), and we recommend the ternary classification based on Global Harmonized System providing more detailed and precise information. In the further study, the proposed model results were experimentally validated with the Direct Peptide Reactivity Assay (DPRA, OECD TG 442C approved model), and the results showed a similar tendency. We anticipate that this study will help to easily and quickly screen chemical sensitization hazards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芋圆不圆完成签到,获得积分10
1秒前
招财不肥发布了新的文献求助10
2秒前
zxc111发布了新的文献求助10
2秒前
魔幻的从梦完成签到,获得积分10
2秒前
3秒前
Xiaoxiao应助sunyexuan采纳,获得10
4秒前
5秒前
6秒前
淼淼之锋完成签到 ,获得积分10
6秒前
赢赢完成签到 ,获得积分10
6秒前
7秒前
8秒前
科目三应助落落采纳,获得10
10秒前
67发布了新的文献求助10
10秒前
10秒前
溜溜完成签到,获得积分10
10秒前
xixi完成签到 ,获得积分10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
撒上咖啡应助科研通管家采纳,获得10
11秒前
RC_Wang应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
琪琪扬扬发布了新的文献求助10
11秒前
sutharsons应助科研通管家采纳,获得30
11秒前
orixero应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
清爽老九应助科研通管家采纳,获得20
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
hui发布了新的文献求助30
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
13秒前
迟大猫应助若狂采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808